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Singular Levi-flat hypersurfaces
and codimension one foliations

MARCO BRUNELLA

Abstract. We study Levi-flat real analytic hypersurfaces with singularities. We
prove that the Levi foliation on the regular part of the hypersurface can be holo-
morphically extended, in a suitable sense, to neighbourhoods of singular points.
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1. Introduction

Let X be a complex manifold of dimension n. A smooth real hypersurface M ⊂ X
is said to be Levi-flat if the codimension one distribution

T C M = T M ∩ J (T M) ⊂ T M

is integrable, in Frobenius’ sense. It follows that M is smoothly foliated by im-
mersed complex manifolds of dimension n −1. We shall denote by FM such a Levi
foliation.

If M is moreover real analytic, then its local structure is very well understood:
according to E. Cartan (see for instance [1, Section 1.7]), around each p ∈ M we
can find local holomorphic coordinates z1, . . . , zn such that M = {�mz1 = 0},
and consequently the leaves of FM are {z1 = c}, c ∈ R. In particular, the Levi
foliation FM extends on a neighbourhood of p to a codimension one holomorphic
foliation, with leaves {z1 = c}, c ∈ C. It is then easy to see that these local
extensions glue together, giving a codimension one holomorphic foliation F on
some neighbourhood of M .

In this paper we are interested in finding a similar structure in the case of singu-
lar Levi-flat hypersurfaces, a subject sistematically initiated by Burns and Gong [2].
Let us firstly recall some terminology.

A closed subset M ⊂ X is real analytic if it is locally defined by the vanish-
ing of a (finite) collection of real analytic functions. A real analytic subset M is
irreducible if it cannot be expressed as M = M1 ∪ M2, with both M1 and M2 real
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analytic and different from M . Any real analytic subset can be decomposed (on
relatively compact open subsets) into a finite collection of irreducible components.
An irreducible real analytic subset M has a well defined dimension dimR M , and
it can be decomposed as a disjoint union M = Mreg ∪ Msing, where: (i) Mreg is
nonempty and open in M , and it is formed by those points of M around which M
is a smooth real analytic submanifold of X of dimension dimR M ; (ii) Msing is a
real analytic subset, all of whose irreducible components have dimension strictly
smaller than dimR M . Remark, however, that Mreg may fail to be dense in M , as in
the well known Whitney umbrella.

When dimR M = dimR X − 1 = 2n − 1, or more generally each irreducible
component of M has dimension 2n − 1, we shall call M a real analytic hypersur-
face. In that case, we shall say that M is Levi-flat if Mreg is Levi-flat in the usual
sense (Frobenius’ integrability).

If M ⊂ X is a Levi-flat real analytic hypersurface then we have on Mreg the
Levi foliation FMreg . A natural question is: does this foliation extend holomorphi-
cally on some neighbourhood of the closure Mreg? Of course, we need here to work,
at least, with singular codimension one holomorphic foliations; see for instance [5]
for the basic dictionary. Let us see some examples.

Example 1.1. Take a nonconstant holomorphic function f : X → C and set M =
{�m f = 0}. Then M is Levi-flat and Msing is the set of critical points of f lying on
M . Leaves of the Levi foliation on Mreg are given by { f = c}, c ∈ R. Of course,
this Levi foliation can be extended to a singular holomorphic foliation on the full
X , generated by the kernel of d f . More complicated examples can be obtained by
taking M = {F ◦ f = 0} for some real analytic function F : C → R, or by starting
with a meromorphic f [2].

Example 1.2. In X = C2 with coordinates z = x + iy, w = s + i t , consider the
irreducible real analytic hypersurface M defined by

M = {t2 = 4(y2 + s)y2}.
We have Msing = {t = y = 0}, a totally real plane in C2. Note that Mreg ∩ Msing =
{t = y = 0, s ≥ 0}, a proper subset of Msing. This hypersurface is Levi-flat: on
Mreg, the leaves of FMreg are the complex curves

Lc = {w = (z + c)2, �mz 	= 0}, c ∈ R.

For every c ∈ R the closure Lc = {w = (z + c)2} cuts Msing along the real curve
{s = (x + c)2}. Thus, each point of Msing ∩ {s > 0} belongs to two closures Lc1

and Lc2 , whereas each point of Msing ∩ {s < 0} belongs to no one. The foliation
FMreg extends holomorphically to a neighbourhood of Mreg: just choose a square
root of w on C2 \ {t = 0, s ≥ 0} (which is a neighbourhood of Mreg), and then take
the holomorphic foliation generated there by dw = 2

√
wdz. However, it is clear

that FMreg cannot be extended to neighbourhoods of points of Mreg ∩ Msing, due to
some “ramification” along Msing (or, more precisely, along the real line {y = t =
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s = 0} ⊂ Msing: the other points are not seriously problematic, for around them
M is the union of two smooth Levi-flat hypersurfaces intersecting transversely). In
spite of this, we could say that FMreg can be extended in some weak or multiform

sense, as solution of the implicit differential equation ( dw
dz )2 = 4w.

Our main result is an extrapolation of this last example. The philosophy which
is behind is that, even if sometimes it is impossible to extend FMreg , it is always
possible to extend it in a “microlocal” sense, i.e. after lifting to the cotangent bun-
dle. In other words, FMreg can always be extended as a (transcendental) implicit
differential equation, or web. This will be better explained in Section 2 below. For
the moment, we state our result in the form of a “resolution theorem” for singular
Levi-flat hypersurfaces.

Theorem 1.3. Let X be a complex manifold of dimension n, and let M ⊂ X be
a Levi-flat real analytic hypersurface. Then there exist a complex manifold Y of
dimension n, a Levi-flat real analytic hypersurface N ⊂ Y , a (singular) codimen-
sion one holomorphic foliation F on Y extending FNreg , and a holomorphic map
π : Y → X, such that for some open N0 ⊂ N :

(i) π |N0 : N0 → Mreg is an isomorphism;
(ii) π |N0

: N0 → Mreg is a proper map.

In the Example 1.2 above, we may take Y = C2, N a real hyperplane, and π a
quadratic map which sends complex lines in N to the curves Lc, c ∈ R. Remark that
here N0 is not equal to Nreg, it is only a (open and dense) part of it. Unfortunately,
during this procedure we loose the isolated part of Msing. Remark that Mreg, as well
as N0, is not a real analytic subset, it is only subanalytic. It could be interesting
to generalise the above theorem, in some way, to the subanalytic setting, but our
method is strictly inside the real analytic world.

The theorem above can be seen as a first step toward a resolution procedure for
singularities of Levi-flat hypersurfaces: the map π is a sort of blow-up of Mreg \
Mreg, allowing afterwards the extension of the Levi foliation. The second step,
which for the moment requires n ≤ 3, consists in applying the Desingularisation
Theorem of Seidenberg (n = 2) or Cano (n = 3) [3, 5] to the foliation F . The
third, and easy, step is the analysis of Levi-flat real analytic hypersurfaces which are
tangent to a simple singularity of codimension one foliation. We leave the details
to the interested reader.

The proof of Theorem 1.3 is based on quite elementary considerations con-
cerning the complexification(s) of real analytic subsets (not only hypersurfaces) in
complex manifolds, which in some sense stem from the seminal work of Diederich
and Fornaess [6] and which are also exploited in [2].

2. Lifting to the cotangent bundle

In this section we give a more precise statement of our main result, and we reduce its
proof to a general statement on the intrinsic complexification of certain real analytic
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subsets.
Consider, as before, a Levi-flat real analytic hypersurface M in a complex

manifold X , dimC X = n. Let PT ∗X be the projectivised cotangent bundle of X :
a CPn−1-bundle over X , whose fibre PT ∗

x X over x ∈ X will be thought as the set
of complex hyperplanes in Tx X . Denote by π the projection PT ∗X → X .

The regular part Mreg of M can be lifted to PT ∗X : just take, for every x ∈
Mreg, the complex hyperplane

T C
x Mreg = Tx Mreg ∩ J (Tx Mreg) ⊂ Tx X.

Call
M ′

reg ⊂ PT ∗X

this lifting of Mreg. Remark that it is no more a hypersurface: its (real) dimension
2n − 1 is half of the real dimension of PT ∗X . However, it is still “Levi-flat”, in a
sense which will be more precisely specified below.

Take now a point y in the closure M ′
reg, projecting on X to a point x ∈ Mreg.

Lemma 2.1. There exists, in a neighbourhood Uy ⊂ PT ∗X of y, a real analytic
subset Ny of dimension 2n − 1 containing M ′

reg ∩ Uy.

(The notation suggests that Uy and Ny should be more properly considered as germs
at y. Similarly for the proposition below.)

Proof. We choose local coordinates z1, . . . , zn, w1, . . . , wn−1 around y such that
z1, . . . , zn are coordinates around x and w1, . . . , wn−1 corresponds to the hyper-
plane dzn +∑n−1

j=1 w j dz j = 0. Take a real analytic equation f of M around x , with
d f 	= 0 on Mreg. Then the real analytic subset defined around y by the equations

f = 0 , w j = ∂ f

∂z j

/ ∂ f

∂zn
, j = 1, . . . , n − 1

contains M ′
reg as an open subset. Indeed, T C Mreg is the Kernel of ∂ f . This analytic

subset may have dimension larger than 2n−1 (for instance, it contains the full fibres
over Msing), but using a stratification of it we see that it contains a real analytic
subset Ny (a stratum) of dimension 2n − 1 and which still contains M ′

reg.

We choose such a Ny as the minimal one (as a germ at y), by taking inter-
sections. We have M ′

reg ∩ Uy ⊂ (Ny)reg, but the inclusion may be strict, as in the
Example 1.2 of the Introduction. Also, Ny may have several irreducible compo-
nents, but each one contains a part of M ′

reg ∩ Uy , by minimality.
The crucial fact is now the following.

Proposition 2.2. There exists, in a neighbourhood Vy ⊂ Uy of y, a complex ana-
lytic subset Yy of (complex) dimension n containing Ny ∩ Vy.

Let us deduce Theorem 1.3 from this proposition.



SINGULAR LEVI-FLAT HYPERSURFACES 665

First of all, Ny ∩ Vy is a real analytic hypersurface in Yy , and it is Levi-flat
because each irreducible component contains a Levi-flat piece [2, Lemma 2.2]. On
Yy , we have a natural codimension one holomorphic (singular) distribution of hy-
perplanes, given by the restriction of the canonical contact structure of PT ∗X . At
points of M ′

reg, this codimension one distribution coincides (by tautology of the

contact form) with T C Mreg. In other words and more precisely, around points of
M ′

reg ∩ Vy the projection π : Yy → X is a biholomorphism, sending M ′
reg to Mreg,

thus Yy appears as the graph of a local holomorphic section of PT ∗X extending the
real analytic section Mreg � x ′ �→ y′ = T C

x ′ Mreg ∈ M ′
reg. This local holomorphic

section is a local hyperplane distribution on X . When lifted to Yy by the same π ,
this distribution becomes a distribution on Yy coinciding with the restriction of the
contact structure.

Now, this distribution is integrable, because it is integrable on a real hypersur-
face, hence it defines a codimension one (singular) foliation Fy on Yy . Clearly, this
foliation Fy extends the Levi foliation of (Ny)reg ∩ Vy , because so is for M ′

reg ∩ Vy

and each irreducible component of Ny ∩ Vy contains a portion of M ′
reg ∩ Vy .

These local constructions are sufficiently canonical to be patched together,
when y varies on M ′

reg: if Yy1 ⊂ Vy1 and Yy2 ⊂ Vy2 are as above, with M ′
reg ∩

(Vy1 ∩ Vy2) 	= ∅, then Yy1 ∩ (Vy1 ∩ Vy2) and Yy2 ∩ (Vy1 ∩ Vy2) have some common
irreducible components containing M ′

reg ∩ (Vy1 ∩ Vy2), and so Yy1 and Yy2 can be
glued by identifying those components. In this way, we obtain an analytic space
Y of dimension n, with a Levi-flat hypersurface N and a holomorphic foliation F ,
enjoying all the properties stated in Theorem 1.3; the map π : Y → X is deduced
from the projection of PT ∗X to X . Finally, to get a smooth Y we just replace the
possibly singular Y with a resolution Ỹ of it, over which N and F can be lifted.
Note that on Y the foliation F is locally defined by a holomorphic 1-form, the
restriction to Y of the contact form on PT ∗X ; therefore on Ỹ the lifted foliation
will be also locally defined by a holomorphic 1-form, obtained by pulling-back the
contact form under the resolution map.

Let us reformulate this proof from a slightly different point of view.
On some neighbourhood X0 ⊂ X of Mreg we have a holomorphic foliation F0

extending the Levi foliationFMreg . The graph of this foliation is a complex manifold
Y0 ⊂ PT ∗X which projects bihlomorphically to X0 by π . This Y0 contains M ′

reg,
as a Levi-flat hypersurface. The main point is then to extend Y0 to a neighbourhood
of M ′

reg, and this is the content of Proposition 2.2. In this way, an extension prob-
lem for foliations (or, more appropriately, for webs) has been transformed into an
extension problem for complex analytic subspaces.

Remark 2.3. The analytic subset Yy can be seen as an implicit differential equation
on X , around x . But there are two quite different situations. If π : Yy → X is
a finite map, then (by Weierstrass) Yy has an equation which is polynomial in the
vertical variables w1, . . . , wn−1, so that the associated implicit differential equation
is “algebraic in the derivatives”. In some sense, even if there is a ramification we
could say that this situation is “not-too-singular”, from the differential equation
point of view. If on the contrary π : Yy → X is not finite over x , we don’t
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know if such an algebraicity in the derivatives persists, i.e. if Yy can be analytically
continued to a neighbourhood of the full fibre over x .
Example 2.4. Consider the subset M ⊂ C2 defined by

M =
⋃
λ∈S1

{z2 = λz1 + ϕ(λ)z2
1}

where ϕ : S1 → C is a real analytic function. Outside the origin (and close to it)
M is real analytic, smooth, and Levi-flat. Thus M \ {0} can be lifted to PT ∗C2 =
C2 × CP1, and the closure of this lifting is a smooth real analytic threefold N
which cuts the fibre over 0 along a smooth circle. The cooking recipe to obtain
the complex surface Y containing N is the following. We differentiate the complex
curves contained in M ,

dz2 = (λ + 2ϕ(λ)z1)dz1,

and then we “eliminate” λ from the two equations z2 = λz1 + ϕ(λ)z2
1 and dz2

dz1
=

λ + 2ϕ(λ)z1, thus obtaining an analytic relation between z1, z2 and w1 = − dz2
dz1

.
It is quite clear that such an equation will be algebraic (in w1) if and only if ϕ is
algebraic, i.e. ϕ(λ) = ∑�

j=−� a jλ
j . However, we believe that this algebraicity

condition on ϕ should be also necessary and sufficient for the real analyticity of
M at the origin. Thus, if M is real analytic at 0 then we would obtain an implicit
differential equation which is algebraic in the derivatives, and the question of the
previous Remark remains unanswered. Note, however, that whatever ϕ is, the sub-
set N is everywhere analytic; hence our method, which is based on the analyticity
of N and not of M , is unfortunately rather useless for these type of subtle problems.

Proposition 2.2 is a particular case of a more general fact, for which it is con-
venient to introduce some more terminology.

Let Z be a complex manifold of dimension m. Let N ⊂ Z be a real analytic
subset of dimension 2n − 1. We shall say that N is a Levi-flat real analytic sub-
set if its regular part is foliated by complex submanifolds of (complex) dimension
n − 1. As in the hypersurface case, we shall denote by FNreg this Levi foliation
on Nreg; it is real analytic and of real codimension one (in Nreg). This definition
can be reformulated in the language of CR geometry [1, Chapter I]: Nreg is a CR
submanifold of CR dimension n − 1 (or CR codimension one) whose complex tan-
gent bundle T C Nreg = T Nreg ∩ J (T Nreg) is integrable. It is easy to see, as in the
hypersurface case [2, Lemma 2.2], that it is sufficient to check the integrability only
on some open nonempty subset N0 ⊂ Nreg.

As in the hypersurface case, the local structure of Nreg is well understood
[1, Section 1.8]: around every z ∈ Nreg there are local holomorphic coordinates
z1, . . . , zm on Z such that

Nreg = {�mz1 = 0, zm−n = . . . = zm = 0}.
In particular, around z there is a canonically defined complex submanifold of Z , of
dimension n, which contains Nreg:

Y0 = {zm−n = . . . = zm = 0}.
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This Y0 is called intrinsic complexification of Nreg (around z). It is the smallest
complex submanifold containing Nreg. Remark that Nreg is a (smooth) Levi-flat
hypersurface in Y0, and the Levi foliation FNreg can be canonically extended to a
holomorphic codimension one foliation FY0 on Y0. This is the situation that we
have already met in the proof of Theorem 1.3.

Now the basic result, from which Proposition 2.2 follows, states that this in-
trinsic complexification can be analytically prolonged around points of the closure
Nreg:

Theorem 2.5. Let Z be a complex manifold of dimension m, and let N ⊂ Z be
a Levi-flat real analytic subset of dimension 2n − 1. Then, for every z ∈ Nreg,
there exists a neighbourhood V ⊂ Z of z and a complex analytic subset Y ⊂ V of
dimension n which contains Nreg ∩ V

The proof will be given in the next section, and it is based on the following
idea. There exists a second type of complexification of N , which could be called
extrinsic complexification [4]. It lives in a larger space, not inside Z , but it has
the advantage that it can be defined around every point of N , not only Nreg. The
intrinsic complexification appears as a “projection” of the extrinsic one, and from
the analytic extendability to singular points of the latter we shall deduce the analytic
extendability of the former. In a vague sense, this is related to [6, Appendix].

It is however important to realize that this result holds because the CR codi-
mension of Nreg is one, and no more. Here is an example showing that an analogous
statement for the higher CR codimensional case may fail. This is related to the fact
that, whereas a holomorphic map from a complex curve is always “locally proper”,
the same is no more true for maps from higher dimensional complex manifolds, due
to the phenomenon of “contraction of divisors”.

Example 2.6. We work in C3, with coordinates z1, z2, z3. Let S ⊂ C3 be the real
analytic surface defined by

z2 = (�ez1)z1

z3 = e�ez1 z1

Note that S is smooth, being the graph over the z1-axis of a smooth function F :
Cz1 → Cz2,z3 . At the point 0 ∈ S we have T C

0 S = T0S, a complex line, whereas
at any other point p ∈ S, p 	= 0, we have T C

p S = {0}. Indeed, 0 ∈ Cz1 is the only
point where the differential of F is C-linear. Thus, S0 = S\{0} is a CR submanifold
of CR dimension 0 and CR codimension 2. The “Levi foliation” is here the foliation
by points.

Along S0 we have the intrinsic complexification Y0 ⊃ S0, which is a complex
surface. However, this complex surface cannot be extended around the point 0. To
see this, observe that over {z1 	= 0} the surface Y0 has equation

z3 = ez2/z1 z1

which has an essential singularity at z1 = 0. More geometrically, if we blow up C3

at the origin, C̃3 b→ C3, then the closure of b−1(Y0) has a trace on the exceptional
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divisor b−1(0) � CP2 which contains the complex curve with equation w3 = ew2 ,
in affine coordinates w2 = z2/z1, w3 = z3/z1. The transcendency of this curve
implies that Y0 cannot be holomorphically extended at 0.

3. Complexification of Levi-flat subsets

We start the proof of Theorem 2.5 by recalling some facts about (extrinsic) com-
plexification of real analytic subsets [4], [1, Chapter X].

Let Z be a complex manifold of dimension m. We shall denote by Z∗ the com-
plex manifold conjugate to Z , that is obtained by replacing the complex structure
J of Z with the opposite complex structure −J . If A ⊂ Z is a complex analytic
subset, then the same subset is also a complex analytic subset of Z∗, but with the
opposite complex structure; it will be denoted by A∗. The diagonal � ⊂ Z × Z∗ is
a totally real submanifold. The projections of Z × Z∗ onto Z and Z∗ will be respec-
tively denoted by � and �∗, and the antiholomorphic involution Z ×Z∗ → Z ×Z∗,
(z1, z2) �→ (z2, z1), will be denoted by  .

Let N ⊂ Z be a real analytic subset of dimension k, and fix a point z0 ∈ Nreg.
Without loss of generality for our purposes, we will suppose that the germ of N at
z0 is irreducible. Set

N� = {(z, z) ∈ Z × Z∗ | z ∈ N }.
Then in some sufficiently small neighbourhood of (z0, z0), which we may assume
equal to Z × Z∗ by restricting Z , there exists an irreducible complex analytic subset
NC of dimension k such that

NC ∩ � = N�.

This NC is called complexification of N at z0. It is obtained by complexifying
the real analytic equations defining N , and it can be characterized as the smallest
(germ at (z0, z0) of) complex analytic subset containing N�. It enjoys the following
fundamental symmetry property:  leaves NC invariant, and N� is the fixed point
set of  |N C .

A word of caution. A real analytic subset is not necessarily coherent [4]. This
means that if z1 ∈ Nreg is another point, close to z0, then we can still define the

complexification ÑC of N at z1 (if the germ of N at z1 has several irreducible
components, we complexify each one), however it may happen that ÑC, defined
in some neighbourhood of (z1, z1), is smaller than the restriction of NC to that
neighbourhood. More precisely, it may happen that the germ of ÑC at (z1, z1) is not
the full germ of NC at (z1, z1), but only a union of certain irreducible components
of it. The situation is even worse if we take z1 ∈ N \ Nreg: the local dimension of
N at z1 is smaller than k, and thus the complexification of N at z1 has also smaller
dimension; the germ of ÑC at (z1, z1) is then a proper subset of the germ of NC.
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Suppose now that N is Levi-flat, k = 2n − 1. Take a regular point z ∈ Nreg.
As we saw in the previous section, in some neighbourhood Vz ⊂ Z of z there
exists a unique smooth complex submanifold Yz of dimension n, which contains
Nreg ∩ Vz and over which the Levi foliation extends as a holomorphic codimension
one foliation Fz . For a good choice of Vz , we may assume that the space of leaves
Yz

/
Fz is a disc D, in which the Levi leaves correspond to points of I = (−1, 1) ⊂

D. Hence, we have a well defined Schwarz reflection

sz : Yz
/
Fz → Yz

/
Fz

with respect to I.
Provided that Vz is sufficiently small, the complexification of N ∩ Vz at z is

a smooth complex submanifold NC
z of Uz = Vz × V ∗

z ⊂ Z × Z∗, of dimension
2n − 1, which in fact coincides with an irreducible component of NC ∩ Uz . The
following Lemma gives the precise relation between Yz and NC

z .

Lemma 3.1. The projection � induces a smooth holomorphic fibration of NC
z over

Yz, and the fibre of � : NC
z → Yz over z′ ∈ Yz is the Schwarz reflection of the leaf

of Fz through z′ (with the opposite complex structure).

Proof. In suitable local coordinates z1, . . . , zm we have

Nreg = {�mz1 = 0, zm−n = . . . = zm = 0}
Yz = {zm−n = . . . = zm = 0}.

If z′ ∈ Yz , then the leaf through z′ is

Lz′ = {z1 = a, zm−n = . . . = zm = 0}
where a is the z1-coordinate of z′, and its Schwarz reflection is

sz(Lz′) = {z1 = ā, zm−n = . . . = zm = 0}.
Local coordinates on Z × Z∗ are provided by z1, . . . , zm, z̄1, . . . , z̄m , and in these
coordinates

NC
z = {z1 = z̄1, zm−n = . . . = zm = z̄m−n = . . . = z̄m = 0}.

We therefore see that NC
z projects by � to Yz , and the fibre over z′ is

{z̄1 = a, z̄m−n = . . . = z̄m = 0} = sz(Lz′)∗.

Of course, a similar statement holds also for the second projection �∗. Thus, NC
z is

a smooth complex hypersurface in Yz × Y ∗
z ⊂ Z × Z∗, with a double fibration over

Yz and Y ∗
z .
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Note that for every z′ ∈ Yz we can also consider the fibre over z′ of the full NC,
i.e. the intersection NC ∩({z′}× Z∗). This is an analytic subset of Z∗ which extends
the leaf sz(Lz′)∗ ⊂ V ∗

z . In particular, each leaf of Fz has an analytic continuation
to the full Z . This fundamental fact was discovered in [6], in a different context,
and it was our starting point.

Let us now see what happens at the singular point z0.
For every p ∈ NC consider the vertical fibre through p

F∗
p = {q ∈ NC | �(q) = �(p)}

and define
d(p) = dimp(F∗

p )

where dimp denotes the local dimension at p (if F∗
p is reducible at p, we take

the maximal dimension among irreducible components). According to Cartan or
Remmert [7, Section V.3], the function d on NC is Zariski semicontinuous, thus
equal to some constant d0 over some Zariski open and dense N̆C ⊂ NC and strictly
greater than d0 over NC \ N̆C. By Lemma 3.1, we have d0 = n − 1, and moreover
N̆C contains generic points of N�

reg (here we say “generic”, and not “all”, because

at special points (z, z) ∈ N�
reg the germ of NC could have a second irreducible

component different from NC
z ).

Set p0 = (z0, z0).
If d(p0) = d0 = n − 1, then by the Rank theorem of Remmert [7, Section V.6]

there exists a neighbourhood Uz0 ⊂ Z × Z∗ of p0 such that �(NC ∩ Uz0) is a
complex analytic subset Yz0 of Vz0 = �(Uz0), of dimension n. The situation is
not very different from the one of Lemma 3.1. And we are just in the conclusion
of Theorem 2.5: obviously Yz0 contains the previously defined Yz , for every z ∈
Nreg ∩ Vz0 .

Hence, we shall suppose from now on that d(p0) = l ≥ n. Thus the vertical
fibre F∗

p0
contains an irreducible component Y ∗ ⊂ Z∗ of dimension l, passing

through p0. Its conjugate Y =  (Y ∗) ⊂ Z is an irreducible component of the
horizontal fibre Fp0 = {q ∈ NC | �∗(q) = �∗(p0)}. In the following, we shall
consider Y sometimes as a (horizontal) subset of NC, sometimes as a subset of the
base Z .

Obviously, Y ⊂ Z is contained in �(NC). Because dim NC = 2n − 1 and
d0 = n − 1, the image of NC by � is a countable union of local analytic subsets of
dimension ≤ n (by iterated application of the Rank theorem). Thus Y cannot have
dimension larger than n, and so

dim Y = n.

To complete the proof, we will show that Y contains �(NC ∩Uz0), for some neigh-
bourhood Uz0 of z0 (thus, after all, Y is equal to that projection, and so Y is in fact
the unique irreducible component of dimension n of the horizontal fibre). Because
Y is closed, it is sufficient to verify this inclusion for �(N̆C ∩ Uz0).
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Note that Y ⊂ NC is not contained in NC \ N̆C, for dimensional reasons:
because Y is horizontal of dimension n and each vertical fibre through NC \ N̆C

has dimension ≥ n, NC would have dimension ≥ 2n. Thus, Y intersects N̆C. If
p = (z, z0) is a point of Y ∩ N̆C, then (by the Rank theorem) the image by � of a
small neighbourhood of p in NC is an analytic subset Yz ⊂ Vz ⊂ Z of dimension n.
The germ of Yz at z could have several irreducible components, but at least one of
them is contained in Y , because Y ∩Vz ⊂ Yz and dim Y = dim Yz . By a connectivity
argument (recall that NC is irreducible, and therefore N̆C is connected), we see that
Y contains all the points arising from the projection of N̆C to Z , as claimed.

Let us conclude by looking again at the (counter) example of the previous
section.

Example 3.2. Take again the real analytic surface S in C3 with equation

z2 = (�ez1)z1

z3 = e�ez1 z1

which, outside 0, is a CR submanifold of CR dimension 0 and CR codimension 2.
Its complexification is the complex analytic surface SC in C3 × C3∗ with equation
(setting z̄ j = w j )

z2 = z1 + w1

2
z1 , w2 = z1 + w1

2
w1

z3 = e
z1+w1

2 z1 , w3 = e
z1+w1

2 w1 .

The projection of SC to the first factor C3 is not analytic: something like z3 =
ez2/z1 z1, for z1 	= 0. The horizontal fibre through 0 ∈ SC is the complex curve
C ⊂ C3 given by

z2 = 1

2
z2

1 , z3 = e
1
2 z1 z1.

It is, of course, contained in the projection of SC but not equal to. The dimensional
arguments used several times in the proof of Theorem 2.5 cannot be used here.
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