
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. VI (2007), 499-510

Sobolev regularity via the convergence rate of convolutions
and Jensen’s inequality

MARK A. PELETIER, ROBERT PLANQUÉ AND MATTHIAS RÖGER

Abstract. We derive a new criterion for a real-valued function u to be in the
Sobolev space W 1,2(Rn). This criterion consists of comparing the value of a
functional

∫
f (u) with the values of the same functional applied to convolutions

of u with a Dirac sequence. The difference of these values converges to zero as
the convolutions approach u, and we prove that the rate of convergence to zero is
connected to regularity: u ∈ W 1,2 if and only if the convergence is sufficiently
fast. We finally apply our criterium to a minimization problem with constraints,
where regularity of minimizers cannot be deduced from the Euler-Lagrange equa-
tion.

Mathematics Subject Classification (2000): 46E35 (primary); 49J45, 49J40
(secondary).

1. Introduction

Jensen’s inequality states that if f : R → R is convex and ϕ ∈ L1(Rn) with ϕ ≥ 0
and

∫
ϕ = 1, then

∫
Rn

f
(
u(x)

)
ϕ(x) dx ≥ f

(∫
Rn

u(x)ϕ(x) dx

)
,

for any u : Rn → R for which the integrals make sense. A consequence of this
inequality is that ∫

Rn
f (u) =

∫
Rn

f (u) ∗ ϕ ≥
∫

Rn
f (u ∗ ϕ). (1.1)

In this paper we investigate the inequality (1.1) more closely. In particular we study
the relationship between the regularity of a function u ∈ L2(Rn) and the asymptotic
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behaviour as ε → 0 of

T ε
f (u) :=

∫
Rn

[
f (u) − f (u ∗ ϕε)

]
. (1.2)

Here ϕε(y) = ε−nϕ(ε−1 y) and f is a smooth function, but now not necessarily
convex. Since u ∗ ϕε → u almost everywhere, we find for ‘well-behaved’ f that
T ε

f (u) → 0 as ε → 0. Our aim is to establish a connection between the rate of
convergence of T ε

f (u) to zero and the regularity of u.
Such a connection between the decay rate of T ε

f (u) and the regularity of u is
suggested by the following informal arguments. Taking n = 1, and assuming ϕ to
be even and u to be smooth, we develop u ∗ ϕε as

u ∗ ϕε(x) =
∫

R

u(x − y)ϕε(y) dy ≈ u(x) + ε2

2
u′′(x)

∫
R

y2ϕ(y) dy, (1.3)

so that

T ε
f (u) ≈ −cε2

∫
R

f ′(u)u′′ = cε2
∫

R

f ′′(u)|u′|2, (1.4)

with c = 1
2

∫
R

y2ϕ(y) dy. This suggests that if u ∈ W 1,2(R) then T ε
f (u) is of

order ε2. Moreover, since f ′′ ≥ 0 in the case that f is convex, (1.4) gives an
enhanced version of (1.1).

Conversely, for functions not in W 1,2(Rn) we might not observe decay of
T ε

f (u) with the rate of ε2, as a simple example shows. Take f (u) = u2 and consider

a function with a jump singularity such as u(x) = H(x) − H(x − 1) �∈ W 1,2(R),
where H(x) is the Heaviside function. Now choose as regularization kernels the
functions ϕε(x) = 1

2ε
(H(x + ε) − H(x − ε)), after which an explicit calculation

shows that T ε
f (u) = 2ε/3. Here the decay is only of order ε.

The goal of this paper is to prove the asymptotic development (1.4) in arbitrary
dimension and to show that also the converse statement holds true: if T ε

f (u) is of

order ε2 then u ∈ W 1,2(Rn). These results are stated below and proved in Sections 2
and 3.

The fact that one can deduce regularity from the decay rate is the original
motivation of this work. In Section 4 we illustrate the use of this result with a
minimization problem in which the Euler-Lagrange equation provides no regular-
ity for a minimizer u. Instead we estimate the decay of T ε

f (u) directly from the

minimization property and obtain that u is in W 1,2.
Our results can be compared to the characterisation of Sobolev spaces intro-

duced by Bourgain, Brezis and Mironescu [2, 4]. In fact, the regularity conclusion
in Theorem 1.2 could be derived from [2], with about the same amount of effort as
the self-contained proof that we give here.

More generally one could try to characterize the class of functions u for which
ε−αT ε

f (u) is controlled uniformly in ε > 0. We briefly discuss this question in
Section 5.
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1.1. Notation and assumptions

Let ϕ ∈ L1(Rn) satisfy

ϕ ≥ 0 in Rn, (1.5)∫
Rn

ϕ = 1, (1.6)∫
Rn

yϕ(y) dy = 0, (1.7)∫
Rn

|y|2ϕ(y) dy < ∞. (1.8)

For ε > 0 we define the Dirac sequence

ϕε(x) := 1

εn
ϕ
( x

ε

)
. (1.9)

Eventually we will restrict ourselves to the case that ϕ is rotationally symmetric,
that is ϕ(x) = ϕ̃(|x |), where ϕ̃ : R+

0 → R+
0 . Then (1.6) is equivalent to

nωn

∫ ∞

0
rn−1ϕ̃ε(r) dr = 1, (1.10)

where ωn denotes the volume of the unit-ball, i.e. |B1(0)| = ωn .
For a function u ∈ L1(Rn) and 0 ≤ s ≤ 1 we define the convolution uε and

modified convolutions uε,s by

uε(x) :=(
u ∗ ϕε

)
(x)=

∫
Rn

u(x−y)ϕε(y) dy, (1.11)

uε,s(x) := (
u ∗ ϕεs

)
(x)=

∫
Rn

u(x−y)ϕεs(y) dy =
∫

Rn
u(x−sz)ϕε(z) dz. (1.12)

Note that uε = uε,1, u = uε,0.

We also use the notation a ⊗ b for the tensor product of a, b ∈ Rn .

1.2. Statement of main results

Our first result proves (1.4).

Theorem 1.1. Let f ∈ C2(R) have uniformly bounded second derivative and

f (0) = 0, f ′(0) = 0. (1.13)

Let (ϕε)ε>0 be a Dirac sequence as in Section 1.1. Then for any u ∈ W 1,2(Rn),

lim
ε→0

1

ε2

∫
Rn

[
f (u) − f (uε)

]
dx = 1

2

∫
Rn

f ′′(u(x))∇u(x) · A(ϕ)∇u(x) dx, (1.14)
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where

A(ϕ) =
∫

Rn

(
y ⊗ y

)
ϕ(y) dy. (1.15)

If ϕ is rotationally symmetric, i.e. ϕ(x) = ϕ̃(|x |), then

lim
ε→0

1

ε2

∫
Rn

[
f (u) − f (uε)

]
dx = 1

2
a(ϕ)

∫
Rn

f ′′(u(x))|∇u(x)|2 dx, (1.16)

with

a(ϕ) = ωn

∫ ∞

0
rn+1ϕ̃(r) dr. (1.17)

The second theorem shows that for uniformly convex f a decay of T ε
f (u) of order ε2

implies that u ∈ W 1,2(Rn).

Theorem 1.2. Let f ∈ C2(R) have uniformly bounded second derivative, assume
that (1.13) is satisfied, and that there is a positive number c1 > 0 such that

f ′′ ≥ c1 on R. (1.18)

If for u ∈ L2(Rn),

lim inf
ε→0

1

ε2

∫
Rn

[
f (u(x)) − f (uε(x))

]
dx < ∞, (1.19)

then u ∈ W 1,2(Rn). In particular (1.14) and (1.16) hold.

Remark 1.3. We observe that by (1.13), f (u) and f (uε) are integrable. In fact, by
the assumptions on f we deduce that

| f (y)| ≤ || f ′′||∞|y|2.
Hence, for all u ∈ L2(Rn) we obtain that | f (u)| ≤ || f ′′||∞|u|2 ∈ L1(Rn).

Since uε ∈ L2(Rn) for u ∈ L2(Rn) we similarly deduce that f (uε) ∈ L1(Rn).
For functions u ∈ L1(Rn) ∩ L2(Rn) Theorems 1.1 and 1.2 hold even without

assuming (1.13).

2. Proof of Theorem 1.1

We first compute that

T ε
f (u)=−

∫
Rn

∫ 1

0

∂

∂s
f
(
uε,s(x)

)
ds dx

=
∫ 1

0

∫
Rn

∫
Rn

f ′(uε,s(x)
)∇u(x − sy) · yϕε(y) dy dx ds

(2.1)
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and that

f ′(uε,s(x)
) − f ′(uε,s(x−sy)

)=−
∫ s

0

∂

∂r
f ′(uε,s(x−r y)

)
dr

=
∫ s

0
f ′′(uε,s(x−r y)

)∇uε,s(x−r y) · y dr.
(2.2)

Since for all 0 ≤ s ≤ 1∫
Rn

∫
Rn

f ′(uε,s(x − sy)
)∇u(x − sy) · yϕε(y) dy dx

=
∫

Rn

∫
Rn

f ′(uε,s(z)
)∇u(z) · yϕε(y) dz dy

(1.7)= 0,

we deduce from (2.1), (2.2) that

1

ε2

∫
Rn

[
f (u(x)) − f (uε(x))

]
dx

= 1

ε2

∫ 1

0

∫
Rn

∫
Rn

[ (∫ s

0
f ′′(uε,s(x − r y)

)∇uε,s(x − r y) · y dr

)

∇u(x − sy) · yϕε(y)
]
dy dx ds

= 1

ε2

∫ 1

0

∫ s

0

∫
Rn

∫
Rn

[
f ′′(uε,s(x)

)∇uε,s(x) · y

∇u(x − r y) · yϕε(y)
]
dy dx dr ds

= 1

εn+2

∫ 1

0

∫ s

0

∫
Rn

f ′′(uε,s(x)
)∇uε,s(x) (2.3)

·
∫

Rn

(
y ⊗ y

) · ∇u(x − r y) ϕ(ε−1 y) dy dx dr ds

= 1

εn+2

∫ 1

0

∫ s

0

∫
Rn

f ′′(uε,s(x)
)∇uε,s(x)

· 1

rn+2

∫
Rn

(
z ⊗ z

) · ∇u(x − z) ϕ(ε−1r−1z) dz dx dr ds

=
∫ 1

0

∫ s

0

∫
Rn

f ′′(uε,s(x)
)∇uε,s(x) · (

κεr ∗ ∇u
)
(x) dx dr ds,

with the modified convolution kernel κεr defined by

κεr (z) := (εr)−nκ
( z

εr

)
, (2.4)
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where κ is given by

κ(y) := (
y ⊗ y

)
ϕ(y). (2.5)

As ε → 0 we have that for all 0 ≤ r , s ≤ 1,

uε,s → u almost everywhere,

∇uε,s → ∇u in L2(Rn), (2.6)

κεr ∗ ∇u →
(∫

Rn
κ(y) dy

)
∇u in L2(Rn). (2.7)

Moreover, the integrand on the right-hand side of (2.4) is dominated by the function

1

2
‖ f ′′‖L∞(R)

(
|∇uε,s |2 + ∣∣κεr ∗ ∇u

∣∣2
)

, (2.8)

which converges strongly in L1(Rn) as ε → 0 by (2.6) and (2.7). We therefore
deduce from (2.4) that

lim
ε→0

1

ε2

∫
Rn

[
f (u(x)) − f (uε(x))

]
dx

=
∫ 1

0

∫ s

0

∫
Rn

f ′′(u(x))∇u(x) ·
(∫

Rn
κ(y) dy

)
∇u(x) dx dr ds

= 1

2

∫
Rn

f ′′(u(x))∇u(x) ·
(∫

Rn
κ(y) dy

)
∇u(x) dx .

(2.9)

In the rotationally symmetric case we observe that∫
Rn

(
y ⊗ y

)
ϕ(y) dy =

(∫ ∞

0
rn+1ϕ̃(r) dr

) ∫
Sn−1

θ ⊗ θ dθ

= ωn

(∫ ∞

0
rn+1ϕ̃(r) dr

)
I d.

(2.10)

Here we used that for i, j = 1, . . . , n,

∫
Sn−1

θiθ j dθ =
{

ωn if i = j,
0 if i �= j.

We therefore obtain from (2.4)-(2.10) that in the rotationally symmetric case

lim
ε→0

1

ε2

∫
Rn

[
f (u) − f (uε)

]
dx = ωn

(∫ ∞

0
rn+1ϕ̃(r) dr

)
1

2

∫
Rn

f ′′(u)|∇u|2 dx .

(2.11)
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3. Proof of Theorem 1.2

Let

� := lim inf
ε→0

1

ε2

∫
Rn

[
f (u(x)) − f (uε(x))

]
dx . (3.1)

We first remark that by assumption (1.18) the function r �→ f (r) − c1
2 r2 is convex

and we deduce again by (1.1) that∫
Rn

[(
f (u) − c1

2
u2

)
−

(
f (uε) − c1

2
u2

ε

)]
≥ 0. (3.2)

This implies that

lim inf
ε→0

1

ε2

∫
Rn

(
u2 − u2

ε

)
≤ 2

c1
lim inf

ε→0

1

ε2

∫
Rn

[
f (u) − f (uε)

] = 2

c1
�. (3.3)

Next we consider δ > 0 and the regularizations uδ = u ∗ ϕδ . Set γε := ϕε ∗ ϕε.
Then we obtain that∫

Rn

[
u2

δ(x) − (
uδ ∗ ϕε

)2
(x)

]
dx

=
∫

Rn
u2

δ −
∫

Rn

∫
Rn

uδ(x)uδ(y)γε(x − y) dy dx

= 1

2

∫
Rn

∫
Rn

(
uδ(x) − uδ(y)

)2
γε(x − y) dy dx

(1.1)≤ 1

2

∫
Rn

∫
Rn

∫
Rn

(
u(x − z) − u(y − z)

)2
ϕδ(z) dz γε(x − y) dy dx

= 1

2

∫
Rn

∫
Rn

∫
Rn

(
u(ξ) − u(η)

)2
γε(ξ − η) dη dξ ϕδ(z) dz

= 1

2

∫
Rn

∫
Rn

(
u(ξ) − u(η)

)2
γε(ξ − η) dη dξ

=
∫

Rn

[
u2(ξ) − u2

ε(ξ)
]

dξ.

(3.4)

We therefore deduce from Theorem 1.1 and (3.3), (3.4) that∫
Rn

|∇uδ|2 = C(ϕ) lim inf
ε→0

1

ε2

∫
Rn

[
u2

δ(x) − (
uδ ∗ ϕε

)2
(x)

]
dx

≤ C(ϕ) lim inf
ε→0

1

ε2

∫
Rn

[
u2(x) − u2

ε(x)
]

dx ≤ 2

c1
�C(ϕ).

(3.5)

Since this estimate is uniform in δ > 0 it follows that u ∈ W 1,2(Rn). By Theo-
rem 1.1 we therefore deduce (1.14) and (1.16).
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4. Application: regularity of minimizers in a lipid bilayer model

We illustrate the utility of Theorems 1.1 and 1.2 with an example. The problem is
to determine the regularity of solutions of the following minimization problem.

Problem 4.1. Let α > 0, h > 0 and a kernel κ ∈ W 1,1(R, R+
0 ) be given such that

κ ′ ∈ BV (R). Denote by τh the translation operator,

(τhu)(x) := u(x − h) for u : R → R.

Consider the set K ⊂ R,

K :=
{

u ∈ L1(R)

∣∣∣ ∫
R

u = 1, u ≥ 0, u + τhu ≤ 1 a.e.

}
(4.1)

and a strictly convex, increasing, and smooth function f with f (0) = f ′(0) = 0.
We then define a functional F : K → R by

F(u) :=
∫

R

f (u) −
∫

R

αuκ∗u (4.2)

and consider the problem of finding a function u ∈ K that minimizes F in K , i.e.

F(u) = min{F(v) | v ∈ K }. (4.3)

Remark 4.2. This problem arises in the modelling of lipid bilayers, biological
membranes (see [1] for more details). There, a specific type of molecules is con-
sidered, consisting of two beads connected by a rigid rod. The beads have a certain
volume, but the rod occupies no space.

The beads are assumed to be of sub-continuum size, but the rod length is non-
negligeable at the continuum scale. In the one-dimensional case we also assume
that the rods lie parallel to the single spatial axis. Combining these assumptions
we model the distribution of such molecules over the real line by a variable u that
represents the volume fraction occupied by leftmost beads. The volume fraction of
rightmost beads is then given by τhu, and in the condition u + τhu ≤ 1 we now
recognize a volume constraint.

The functional F represents a free energy. In the entropy term
∫

f (u) the
function f is strictly convex, increasing, and smooth and can be assumed to satisfy
f (0) = f ′(0) = 0. The destabilizing term − ∫

uκ∗u is a highly stylized represen-
tation of the hydrophobic effect, which favours clustering of beads.

Without the constraints u ≥ 0 and u + τhu ≤ 1 present in (4.1), we would
immediately be able to infer that minimizers (even stationary points) are smooth
using a simple bootstrap argument: since u ∈ K we have u ∈ L p(R) and κ∗u ∈
W 1,p for all 1 ≤ p ≤ ∞, and therefore, using the Euler-Lagrange equation,

f ′(u) − 2ακ∗u = λ,



SOBOLEV REGULARITY VIA JENSEN’S INEQUALITY 507

for some λ ∈ R, we find u ∈ W 1,p(R). Iterating this procedure we obtain that u ∈
W k,p(R) for all k ∈ N, 1 ≤ p ≤ ∞. However, when including the two constraints,
two additional Lagrange multipliers µ and ν appear in the Euler-Lagrange equation,

f ′(u) − 2ακ∗u = λ + µ − ν − τ−hν.

Here µ and ν are measures on R, and standard theory provides no further regularity
than this. In this case the lack of regularity in the right-hand side interferes with the
bootstrap process, and this equation therefore does not give rise to any additional
regularity.

The interest of Theorem 1.2 for this case lies in the fact that K is closed under
convolution. In particular, if u is a minimizer of F in K , then uε = ϕε∗u is also
admissible, and we can compare F(uε) with F(u). From this comparison and an
application of Theorem 1.2 we deduce the regularity of u:

Corollary 4.3. Let u be a minimizer of (4.3). Then u ∈ W 1,2(R).

Proof. Choose a function ϕ ∈ L1(R) as in Section 1.1 with Dirac sequence (ϕε)ε>0,
and set uε := ϕε∗u. First we show that there exists a constant C ∈ R such that for
all u ∈ L2(R) ∣∣∣ ∫

R

(
uκ∗u − uεκ∗uε

)∣∣∣ ≤ Cε2
∫

R

u2. (4.4)

With this aim we observe that∫
R

(
uκ∗u − uεκ∗uε

) =
∫

R

u
(
κ∗u − κ∗u∗γε

)
(4.5)

with

γ := ϕ∗ϕ, γε(x) := (
ϕε∗ϕε

)
(x) = 1

ε
γ
( x

ε

)
,

and that γ, γε satisfy the assumptions in Section 1.1.
Since κ ′ ∈ BV (R) we have (κ ∗ u)′′ = κ ′′ ∗ u ∈ L2(R) and

‖κ ′′ ∗ u‖L2(R) ≤
(∫

R

|κ ′′|
)

‖u‖L2(R).

Repeating some arguments of Theorem 1.1 we calculate that

(κ∗u)(x) − (κ∗u∗γε)(x) = −
∫ 1

0

d

ds

∫
R

(κ∗u)(x − sy)γε(y) dy ds

=
∫ 1

0

∫
R

(κ∗u)′(x − sy)yγε(y) dy ds

=
∫ 1

0

∫ 1

0

∫
R

(κ∗u)′′(x − rsy)sy2γε(y) dy ds dr

= ε2
∫ 1

0

∫ 1

0

∫
R

(κ∗u)′′(x − εrsz)sz2γ (z) dz dr ds,
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and therefore that∣∣∣∣
∫

R

u
(
κ∗u − κ∗u∗γε

)∣∣∣∣

≤ ε2
∫ 1

0

∫ 1

0

∫
R

[∫
R

(κ∗u)′′(x − εrsz)2 dx

] 1
2
[∫

R

u(x)2 dx

] 1
2

sz2γ (z) dz dr ds

≤ ε2C(γ )‖κ ′′ ∗ u‖L2(R)‖u‖L2(R)

≤ ε2C(ϕ, κ)‖u‖2
L2(R)

,

which by (4.5) implies (4.4).
Since K is closed under convolution with ϕε, uε is admissible, and therefore

0 ≤ F(uε) − F(u) ≤
∫

R

[ f (uε) − f (u)] + Cε2
∫

R

u2.

The last term is bounded by

Cε2 ‖u‖L1(R) ‖u‖L∞(R) ≤ Cε2,

which follows from combining both inequality constraints in (4.1).
Therefore

∫ [ f (u) − f (uε)] = O(ε2), and from Theorem 1.2 we conclude that
u ∈ W 1,2(R).

As is described in more detail in the thesis [3], Corollory 4.3 paves the way
towards rigorously deriving the Euler-Lagrange equations for Problem (4.3), and
forms an important ingredient of the proof of existence of minimizers.

5. Other decay rates

Here we briefly touch the question how to characterize the class of functions u for
which ε−αT ε

f (u) is controlled uniformly in ε > 0. The results of this paper give
a complete answer for α = 2. The example in the introduction shows that for
α = 1 one cannot expect more regularity than that of the Heaviside-function. For
1 < α < 2 the following calculation suggests that a control on ε−αT ε

f (u) is related

to the W α/2,2(Rn)-regularity of u.

Proposition 5.1. Let f (u) = u2, 1 < α < 2, and assume that u ∈ W α/2,2(Rn).
Then

lim
ε→0

1

εα
T ε

f (u) = 0. (5.1)
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Proof. We first use Plancherel’s Theorem to compute that

T ε
f (u) =

∫
Rn

[
u2 − (u ∗ ϕε)

2]

= 1

2π

∫
Rn

[|û|2 − |û ∗ ϕε|2
]

= 1

2π

∫
Rn

|û(ξ)|2(1 − |ϕ̂(εξ)|2) dξ,

(5.2)

where for a function g we denote by ĝ(ξ) = ∫
Rn e−iξ ·x g(x) dx its Fourier trans-

form. We further compute, using (1.6), (1.7) that

1 − |ϕ̂(εξ)|2 = 1 −
(∫

Rn
e−iεξ ·xϕ(x) dx

) (∫
Rn

eiεξ ·zϕ(z) dz

)

= 1 −
∫

Rn

∫
Rn

e−iεξ ·(x−z)ϕ(x)ϕ(z) dxdz

=
∫

Rn

∫
Rn

(
1 − e−iεξ ·(x−z))ϕ(x)ϕ(z) dxdz

=
∫

Rn

∫
Rn

(
1 − cos(εξ · (x − z))

)
ϕ(x)ϕ(z) dxdz.

Together with (5.2) this implies that

ε−αT ε
f (u) =

∫
Rn

∫
Rn

∫
Rn

|û(ξ)|2|ξ · (x − z)|αϕ(x)ϕ(z)g(εξ · (x − z)) dxdzdξ,

(5.3)

where

g(r) := 1 − cos r

|r |α .

Next we observe that g is uniformly bounded on R and that g(r) → 0 as r → 0.
Using (1.8), (5.3), and u ∈ W α/2,2(Rn) we now deduce (5.1) from Lebesgue’s
Dominated Convergence theorem.
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