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Quasi-lines and their degenerations

LAURENT BONAVERO AND ANDREAS HÖRING

Abstract. In this paper we study the structure of manifolds that contain a quasi-
line and give some evidence towards the fact that the irreducible components
of degenerations of the quasi-line should determine the Mori cone. We show that
the minimality with respect to a quasi-line yields strong restrictions on fibre space
structures of the manifold.
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1. Introduction

Let X be a complex quasiprojective manifold of dimension n. A quasi-line l in X
is a smooth rational curve f : P1 ↪→ X such that f ∗TX is the same as for a line in
Pn , i.e. is isomorphic to

OP1(2) ⊕ OP1(1)⊕n−1.

Although the terminology suggests that quasi-lines are very special objects, we will
see that they appear in a lot of situations.

Examples 1.1.

(1) If X is a smooth Fano threefold of index 2 with Pic(X) = ZH , where H is very
ample, then a general conic C (i.e. a curve satisfying H · C = 2) is a quasi-line
(Oxbury [20], see also Bădescu, Beltrametti and Ionescu [3]).

(2) If X is rationally connected, then there exists a sequence X ′ → X of blow-ups
along smooth codimension 2 centres such that X ′ contains a quasi-line (Ionescu
and Naie [11]).

(3) If X contains a quasi-line l, let π : X ′ → X be a blow-up of X along a smooth
subvariety Z . A general deformation of l does not meet Z , so it identifies to a
quasi-line in X ′.
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Deformation theory shows that rational curves whose deformations passing through
a fixed point dominate the manifold have −K X -degree at least dim X + 1. Quasi-
lines can be seen as the rational curves realising the boundary case −K X · l =
dim X + 1, so it is reasonable to ask if the existence of a quasi-line has any impli-
cations on the global structure of the manifold. Yet as the Example 1.1(2) shows
this implication can’t be much stronger than the rational connectedness of X , so we
will have to make extra restrictions. The theory of Kählerian twistor spaces which
provided the first motivation for the study of quasi-lines suggests that the most im-
portant class to study are Fano manifolds [10]. The cone theorem then shows that
the Mori cone NE(X) of a Fano manifold is closed and polyhedral, the extremal
rays being generated by classes of rational curves. If the Picard number is at least 2,
the class of a quasi-line does not generate an extremal ray, but we have the natural
following question.

Question 1.2. For a Fano manifold X containing a quasi-line l, do the numerical
classes of irreducible components of degenerations of l generate the Mori cone
NE(X)?

In this question, it is hopeless to expect that the numerical classes of irreducible
components of a single degeneration of l generate the Mori cone NE(X). Before
asking such a question, one should better verify that degenerations exists. This is
guaranteed by the characterisation of the projective space by Cho, Miyaoka and
Shepherd-Barron, which we restate here in the language of quasi-lines (see Section
2 for the terminology).

Theorem 1.3 ([4, 13]). Let X be a projective manifold that contains a quasi-line l.
Suppose that for a general point x of X, the deformations of l passing through x
form an unsplit family of rational curves. Then X � Pn and l ⊂ Pn is a line.

First evidence for an affirmative answer to the question comes from the fol-
lowing situation: suppose that there exists an effective divisor D ⊂ X such that
D · l = 0. Then there exists a degeneration that has an irreducible component in
D, moreover there exists a birational Mori contraction whose locus is contained
in D (see Lemma 3.1). This observation leads us to recall the related notion of
minimality with respect to a quasi-line, introduced by Ionescu et al. in [3, 12].

Definition 1.4. Let X be a projective normal Q-factorial (Fano) variety X that con-
tains a quasi-line l in its nonsingular locus Xns (we say that the couple (X, l) is
a (Fano) model). The variety X is minimal with respect to l if for every effective
Cartier divisor D ⊂ X , we have D · l > 0. This also means that the numerical class
of l belongs to the interior of the cone generated by the classes of moving curves.

Two models (X, l) and (X ′, l ′) are equivalent if there are Zariski open subsets
U ⊂ X and U ′ ⊂ X ′ containing respectively l and l ′ and an isomorphism µ : U →
U ′ such that µ(l) = l ′.

The notions of minimality and equivalent models were introduced in order to
avoid situations like in Example 1.1(3), where X ′ is clearly not minimal. Our first
main result is an inverse statement for smooth Fano models of dimension three.
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Theorem A. Let (X, l) be a smooth Fano model of dimension three. Then there
exists a birational morphism µ : X → X ′ onto a Q-factorial projective three-
fold with at most terminal singularities such that µ is an equivalence of models
(X, l) � (X ′, µ(l)), and X ′ is minimal with respect to µ(l).

The core of this paper considers smooth models (X, l) such that the manifold
X admits a fibration ϕ : X → Y . The first task is to characterise situations where
this induces a morphism of models (X, l) → (Y, ϕ(l)), i.e. the image ϕ(l) ⊂ Yns
is a quasi-line. Lemma 4.1 shows that the study of morphisms of models should
be started by considering fibrations ϕ : X → P1 such that l is a section. We
will investigate this in Subsection 4.1 and discover important differences between
models with e(X, l) = 1 (that is there exists exactly one deformation of l through
two general points of X , see Definition 2.2) and those with e(X, l) > 1.

Theorem B. Let (X, l) be a smooth Fano model of dimension at most four, and let
ϕ : X → P1 be a fibration such that l is a section of ϕ. Then the general fibre F
contains a quasi-line. If furthermore e(X, l) = 1, the variety X is not minimal with
respect to l.

If we accept the general idea that the extremal contractions of a Fano model
(X, l) are related to the degenerations of l, the minimality with respect to l should
also yield some restriction on the structure of the morphisms of X . An example for
a birational morphism is the following characterisation of the projective space due
to Bădescu, Beltrametti and Ionescu.

Theorem 1.5 (3, Theorem 4.4, Corollary 4.6). Let (X, l) be a smooth model such
that X is minimal with respect to l. Suppose that there exists a big and nef divisor
such that H · l = 1. Then X � Pn and l ⊂ Pn is a line.

We will show a similar statement in a relative setting.

Theorem C. Let ϕ : (X, l) → (Y, ϕ(l)) be a morphism of smooth models, and
suppose that ϕ is flat of relative dimension 1. Assume furthermore that:

(1) X is minimal with respect to l and e(X, l) = 1,
(2) there exists a big and nef line bundle H on Y such that ϕ∗H · l = 1.

Then Y � Pn−1 and X � P(E) where E is a stable rank two vector bundle over Y .
If furthermore X is Fano, we have dim X = 3 and X � P(TP2).

This result follows from two intermediate results (Theorem 4.14 and Proposi-
tion 5.1) which are interesting in their own right and classification results of Fano
bundles (Corollary 5.4 and Proposition 5.5).

ACKNOWLEDGEMENTS. We heartly thank Cinzia Casagrande and Rita Pardini for
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also thank Stéphane Druel for his proofreading and helping us to repair an error in
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2. Notation and basic results

We work over the complex field C, topological notions always refer to the Zariski
topology. A variety is an integral scheme of finite type over C, a manifold is a
smooth variety. A fibration is a surjective morphism ϕ : X → Y between normal
varieties such that dim X > dim Y > 0 and ϕ∗OX � OY , that is all the fibres are
connected. Fibres are always scheme-theoretic fibres. For general definitions we
refer to Hartshorne’s book [8], we will also use the standard terminology of Mori
theory and deformation theory as explained in [5, 15].

2.1. Deformations and degenerations

Let X be a projective variety, and let C ⊂ X be an integral projective curve. Iden-
tify C to its fundamental cycle,1 and suppose that the Chow scheme C(X) is irre-
ducible at the point [C]. Denote by H the normalisation of the unique irreducible
component of C(X) containing [C]. Furthermore we have the incidence variety
U ⊂ H × X endowed with two natural morphisms q : U → H and p : U → X , in
particular q is equidimensional.
Definition 2.1. A deformation C ′ of C is an integral curve such that [C ′] ∈ H. Let
h ∈ H be a point such that the corresponding cycle Ch is reducible or non-reduced,
then Ch will be called a degeneration of C . Denote by H∗ ⊂ H the open subset
parametrizing deformations of C . The family H is said to be unsplit if H∗ = H.

Let Z ⊂ X be a subvariety. We say that the deformations of C dominate
(respectively cover) Z if p(q−1(H∗)) ∩ Z is dense in Z (respectively contains Z ).

Let (X, l) be a smooth model, and let x ∈ l ⊂ X be a point. Since the normal
bundle of l is ample, the Chow scheme C(X) is smooth of dimension 2 dim X − 2
at [l]. Therefore there exists a unique irreducible component H of C(X) containing
[l]. The subscheme q(p−1(x)) ⊂ H is smooth at [l] and of dimension n − 1. We
denote by Hx the normalisation of the irreducible component of q(p−1(x)) that
contains [l]. We denote by Ux the normalisation of the corresponding incidence
variety in Hx × X . In order to ease the notation we denote the restriction of p and
q to Ux by the same letter.

Ux

q

��

p �� X

Hx

(2.1)

1 Throughout the whole paper, we will not distinguish between an effective cycle and its support.
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The general fibre of q is a smooth P1 and its image in X is still a quasi-line.
Let h ∈ Hx be a point that parametrises a degeneration of l, then we’ll denote the
corresponding 1-cycle by

∑
i αi li or l ∼ ∑

i αi li , and call it a degeneration of l
with fixed point x .

One special feature of quasi-lines is that given a quasi-line and two general
points, there exists finitely many deformations of the quasi-line passing through
these two points. This fact is formalised in the next notion, introduced by Ionescu
and Voica.

Definition 2.2. Let (X, l) be a model, and let x ∈ X be a general point. Let
p : Ux → X be the morphism from diagram 2.1, then we define

e(X, l) := deg(p).

Since the evaluation morphism p is surjective and generically finite, the number e
is well-defined. It is clear that e is an invariant of Zariski equivalent models.

2.2. A lemma

The following technical lemma shows that if e(X, l) = 1, the minimality with
respect to l yields a strong restriction on the degenerations of l.

Lemma 2.3. Let (X, l) be a smooth model such that e(X, l) = 1. Let x ∈ X be
a general point, and let D ⊂ X be a prime effective divisor such that x /∈ D.
Suppose that through a general point of D passes an irreducible component li of a
degeneration

∑
i αi li of l with fixed point x such that li ⊂ D. Then D · l = 0, in

particular X is not minimal with respect to l.

Proof. We use the notation of the basic Diagram 2.1. By definition e(X, l) = 1
implies that the map p : Ux → X is birational. We argue by contradiction and
suppose that D · l > 0. Since x /∈ D, this implies that for a general point y ∈
D, there exists a quasi-line through x and y. By hypothesis, there exists also a
degeneration of l through y. In particular p−1(y) is not a singleton, so y is contained
in the image of the exceptional locus of p. This is impossible since this image has
codimension at least 2.

3. Minimality and birational contractions

Question 1.2 asks if there are is a link between a quasi-line l ⊂ X and the extremal
contractions of X . If X is minimal with respect to l, Section 4 will provide some
evidence in special cases. If X is not minimal, we can make a surprisingly simple
observation formulated in the next lemma. Recall first that an elementary (Mori
extremal) contraction ϕ : X → Y from a Fano manifold X to a normal variety
Y is a morphism with connected fibres which contracts exactly the curves whose
numerical class belong to a given extremal ray of the Mori cone NE(X) of X .
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Lemma 3.1. Let (X, l) be a Fano model, and let D be an effective prime divisor on
X such that D · l = 0. Then there exists a Mori contraction of birational type whose
exceptional locus is contained in D. In particular, if all the elementary contractions
of X are of fibre type, then X is minimal with respect to l.

Proof. Fix a general point x ∈ X \ D, then the deformations and degenerations of
l with fixed point x cover X . Since D · l = 0, no deformation of l meets D. For
any point y ∈ D, we thus can write l ∼ ∑k

i=1 αi li with αi ∈ N∗ such that one
component passes through y. Since the cycle is connected and also passes through
x , there exists a component li that meets D and is not contained in it, so D · li > 0.
Therefore there exists another component, say l1, that satisfies D · l1 < 0. Since X
is Fano we have a decomposition in N1(X) ⊗ R (cf. [5, Chapter 1])

l1 =
∑

j

β j� j ,

where the � j are generators of some extremal rays of the Mori cone NE(X) and
β j > 0. Since D · l1 < 0 there exists at least one extremal rational curve � j such
that D · � j < 0. The corresponding extremal contraction has its exceptional locus
contained in D, therefore it is birational.

Example 3.2. The only smooth model (S, l) of dimension two that is minimal with
respect to l is the model (P2, line). Indeed consider the deformations of l passing
through a general point x . If (S, l) is not (P2, line), there exists Theorem 1.3 at
least one degeneration

∑k
i=1 αi li . Hence

1 = l · l = l ·
k∑

i=1

αi li

implies that l · li = 0 for some i . More generally if (S, l) is a smooth model of
dimension two, then S is the blow-up of P2 at finitely many points, l being the
inverse image of a general line of P2 [12, Proposition 1.21].

In higher dimension the structure of the birational contractions µ : X → X ′
becomes more complicated. In particular the contraction might be small (which
means that its exceptional locus in X might be of codimension bigger than two). In
this case µ(D) ⊂ X ′ would be a Weil divisor such that µ(l) does not meet µ(D),
thus contracting would not improve the situation and it is not clear if there exist an
equivalent model which is minimal with respect to the quasi-line. The next theorem
shows that everything works well in dimension three.

Theorem 3.3. Let (X, l) be a smooth Fano model of dimension three. Then there
exists a birational morphism µ : X → X ′ on a Q-factorial projective three-
fold with at most terminal singularities such that µ is an equivalence of models
(X, l) � (X ′, µ(l)), and X ′ is minimal with respect to µ(l).
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Proof. Let D1, . . . , Dk be the pairwise different effective prime divisors such that
Di · l = 0. Then by Lemma 3.1, there exists for every i ∈ {1, . . . , k} an elementary
contraction of birational type µi : X → Xi such that the exceptional locus is
contained in Di . Since birational contractions of smooth threefolds are divisorial
the exceptional locus of µi is exactly Di . Since Di · l = 0, a general deformation
of l does not meet the exceptional locus, so the morphisms µi are equivalences of
models.

By the classification of birational Mori extremal contractions in dimension 3,
the morphism µi contracts Di to a point, or X is the blow-up of a manifold Xi along
a smooth curve. The model X ′ is obtained along the following algorithm.

Step 1. One of the morphisms µi is the blow-up of a Fano manifold Xi along a
smooth curve. We replace (X, l) by the equivalent model (Xi , µi (l)) and restart the
program.

Step 2. None of the morphisms µi is the blow-up of a Fano manifold Xi along a
smooth curve. It follows from [17, Proposition 4.5.] and [18] that for all i the line
bundle ODi (Di ) is negative on all the curves contained in Di . More precisely, ei-
ther Di is contracted to a point, or Di is isomorphic to P1 × P1 with normal bundle
ODi (Di ) � OP1×P1(−1, −1) and Di is mapped to a smooth rational curve with
normal bundle OP1(−1) ⊕ OP1(−1) (and in that case Xi is smooth). A standard
argument shows that Di ∩ D j = ∅ for all i �= j . We can then “do successively” the
morphisms µi , getting a birational morphism µ : X → X ′ such that the exceptional
divisor is exactly D1 ∪ . . .∪ Dk . Moreover the variety X ′ is a Q-Gorenstein projec-
tive threefold with at most terminal singularities since at each step, the morphism
µi is a Mori contraction.

Finally, since a general quasi-line l does not meet D1 ∪ . . .∪ Dk , the morphism
µ is an equivalence of models (X, l) � (X ′, µ(l)). Since the strict transform of any
effective prime divisor on X ′ is an effective prime divisor on X , it is also clear that
X ′ is minimal with respect to µ(l).

4. Fibrations between models

Let (X, l) be a smooth model that admits a fibration ϕ : X → Y . Since l is a very
free curve, it is clear that l is not contracted by ϕ and the image ϕ(l) is also a very
free curve in Y . The answer to the following questions is not so clear:

1. Do Y or the general fibre F contain quasi-lines? How are they related to l?

2. Does the minimality with respect to l imply any restrictions on the fibre space
structure?

In general one should not expect too much, but we will see that the restriction to
morphisms of models (X, l) → (Y, ϕ(l)) is a good framework for analysing these
problems.
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Lemma 4.1. Let ϕ : X → Y a fibration from a projective manifold X onto a
projective manifold Y of dimension at least 2.

(1) Let l be a general deformation of a given quasi-line on X and suppose that ϕ(l)
is smooth. Then the following are equivalent:

(a) the image ϕ(l) ⊂ Y is a quasi-line,
(b) the curve l ⊂ ϕ−1(ϕ(l)) is a quasi-line of the manifold ϕ−1(ϕ(l)).

In this case, the morphism l → ϕ(l) is an isomorphism.
(2) Conversely, let l be a rational curve in X such that the image ϕ(l) ⊂ Y is

a quasi-line, the rational curve l ⊂ ϕ−1(ϕ(l)) is a quasi-line of the manifold
ϕ−1(ϕ(l)) and the morphism l → ϕ(l) is an isomorphism. Then l is a quasi-line
of X.

Proof. Note first that since ϕ(l) is general and smooth, the preimage Z :=ϕ−1(ϕ(l))
is smooth of dimension dim X − dim Y + 1. So we have an exact sequence

0 → Nl/Z → Nl/X → NZ/X ⊗ Ol → 0,

and NZ/X � ϕ∗Nϕ(l)/Y .
The statement (2) is then obvious since any extension

0 → OP1(1)⊕a → E → OP1(1)⊕b → 0

splits.
Let us show the statement (1): the isomorphism NZ/X � ϕ∗Nϕ(l)/Y implies

deg NZ/X ⊗ Ol = d · deg Nϕ(l)/Y ,

where d is the degree of the morphism l → ϕ(l). We have deg Nl/X = dim X − 1
and ϕ(l) is a very free curve, so deg Nϕ(l)/Y ≥ dim Y − 1 ≥ 1. Hence

deg Nl/Z = deg Nl/X − deg NZ/X ⊗ Ol

= dim X − 1 − d · deg Nϕ(l)/Y

≤ dim X − 1 − d · (dim Y − 1)

≤ dim X − 1 − dim Y + 1 = dim Z − 1,

(∗)

and equality holds if and only if d = 1 and deg Nϕ(l)/Y = dim Y − 1.

(b) ⇒ (a). If l ⊂ Z is a quasi-line, then deg Nl/Z = dim Z − 1, so equality holds
in (∗). Hence deg Nϕ(l)/Y = dim Y − 1 and d = 1, so ϕ(l) is a quasi-line and the
morphism l → ϕ(l) is an isomorphism.

(a) ⇒ (b). Suppose now that the image of a general quasi-line of X is a quasi-line
of Y . Fix a general point x in X such that for some quasi-line l through x , the image
ϕ(l) is a quasi-line through ϕ(x). Let Hx and H′

ϕ(x) the corresponding varieties as
defined in Section 2. Since ϕ(l) is a quasi-line we have by [15, I, Theorem 6.8] a
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natural surjective morphism ϕ : Hx → H′
ϕ(x) defined by [l] �→ [ϕ∗(l)]. Choose

[l ′] such that ϕ−1([l ′]) has an irreducible component S of dimension dim X −dim Y
that parametrises at least one quasi-line. We may also assume that Z := ϕ−1(l ′) is a
smooth variety. By construction, p(q−1(S)) ⊂ Z (we use the notation of Diagram
2.1). Since S parametrises a family of cycles through a fixed point x that dominates
Z and a general member l ∈ S is irreducible, it is a very free curve in Z . This shows
that deg Nl/Z ≥ dim Z − 1. By the inequality (∗) we even have equality, so l is a
quasi-line in Z .

Remark 4.2. The proposition shows that the study of fibrations ϕ : (X, l) →
(Y, ϕ(l)), where l and ϕ(l) are quasi-lines, essentially reduces to the study of fi-
brations ϕ : (X, l) → P1 where l is both a quasi-line and a section of ϕ. Note
however that in general, ϕ−1(ϕ(l)) is not Fano even if X and Y are (see Example
(2) immediately after Theorem 4.14). One question also immediately arises and
will be studied in the next paragraph: if l is a section of ϕ : (X, l) → P1, what can
we say about very free rational curves in the general fibre?

4.1. Fibrations over a curve

Recall that the pseudo-index of a Fano manifold X is the positive integer defined as

iX := min{−K X · C | C is a rational curve of X}.
This number has been very much studied in the last period, the general philosophy
being that the Fano manifolds with high pseudo-index are the easiest to understand.

Lemma 4.3. Let (X, l) be a smooth Fano model of dimension n, and let ϕ : X →
P1 be a fibration such that l is a section of ϕ. Then one of the following holds:

1. the pseudo-index of the general fibre is strictly smaller than (n + 1)/2,
2. the general fibre of ϕ is isomorphic to Pn−1.

If moreover X is minimal with respect to l, the second case does not occur.

Proof. Fix a general point x ∈ X such that F := ϕ−1(ϕ(x)) is a smooth fibre and
such that there passes a quasi-line through x . Let y ∈ F be a point different from
x , then there exists no quasi-line through x and y: the quasi-line is a section, so it
meets F in exactly one point.

Therefore there exists a degeneration
∑k

i=1 αi li connecting x to y. Then we
have F · li ≥ 0 for all i , and equality holds if and only if li is contracted by ϕ. Since
l is a section, we have

1 = F · l = F ·
k∑

i=1

αi li =
k∑

i=1

αi F · li .

It follows that there exists a unique component, say l1 such that F · l1 = 1 and for
i > 1, we have F · li = 0. Since for i > 1, the curves li are contained in a ϕ-fibre,
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there exists a renumbering of l2, . . . lk and 2 ≤ k′ ≤ k such that for 2 ≤ i ≤ k′,
the curve li is contained in F and the connected chain of curves l2 ∪ . . . ∪ lk′ passes
through x and y.

We distinguish two cases:

a) there exists a y ∈ F , such that k′ > 2. Denote by iF the pseudo-index of F ,
then

n + 1 = −K X · l = −K X · (l1 +
k∑

i=2

αi li ) > −K X ·
k′∑

i=2

αi li ≥ 2iF ,

so we are in the first case of our statement;
b) for all y ∈ F \ {x}, we have k′ = 2. Then the curves l2 form an unsplit family

of curves that connects every point to x . It follows, by Theorem 1.3 that F �
Pn−1. Assume now that X is minimal with respect to l. Since l is a section,
an intersection calculus shows that every fibre of ϕ is integral. Hence X is a
projective bundle over P1 (by a simple refinement, due to Araujo, of Fujita’s
characterisation of projective bundles [6]). Finally we have X � P(O⊕n−1

P1
⊕

OP1(1)) by [12, Proposition 4.1], which is not minimal.

The next example shows that the lemma does not hold if the quasi-line is not a
section.

Example 4.4. Let X be a general member of |OP1×Pn (1, d)|, where n, d are inte-
gers satisfying n ≥ 3 and 1 ≤ d ≤ n. Then X is Fano and the general fibre of
ϕ : X → P1 is a smooth hypersurface of Pn of degree d (hence with pseudo-index
n + 1 − d). Moreover, X contains a quasi-line l (the inverse image of a general line
in Pn) but the map ϕ|l : l → P1 has degree n.

Theorem 4.5. Let (X, l) be a smooth Fano model of dimension at most four, and
let ϕ : X → P1 be a fibration such that l is a section of ϕ. Then the general fibre F
contains a quasi-line.

Proof. The statement is trivial for dim X = 1, 2. If dim X = 3, the general fibre is
a del Pezzo surface. All the del Pezzo surfaces except P1 × P1 contain quasi-lines,
but the quadric is excluded by Lemma 4.3. If dim X = 4, the result is an immediate
consequence of the Lemma 4.8 below which gives a much more precise information
in this case: the quasi-line of F is a component of a degeneration of l.

Before stating a technical lemma, recall that for any smooth quasi-projective variety
Y , there exists a subset Y free which is the intersection of countably many dense open
subsets of Y such that any rational curve on Y whose image meets Y free is free.
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Lemma 4.6. Let F be Fano manifold of dimension at most three and let x ∈ F be a
fixed very general point. Assume that there is a connected chain of rational curves
l ′1 ∪ . . . ∪ l ′k passing through x whose deformations cover a dense open subset of F

and such that −K F · ∑k
i=1 l ′i ≤ dim F + 1. Then a general deformation satisfies

k = 1 and l ′1 is a very free rational curve in F such that −K F · l ′1 = dim F + 1.

Proof. The statement is trivial is F is a curve, so suppose dim F is 2 or 3. We argue
by contradiction and assume that for y ∈ F a very general point, the connected
chain of curves ∪k

i=1l ′i passing through x and y is reducible, in particular k ≥ 2.
Note that since x and y are very general they are both in F free. Furthermore we
can suppose that no irreducible component l ′i0

contains both x and y; otherwise the
corresponding component l ′i0

would be very free [5, Proposition 4.20], so

dim F + 1 = −K F ·
∑

i

l ′i > −K F · l ′i0
≥ dim F + 1,

a contradiction.
So up to renumbering we can suppose that x ∈ l ′1, y ∈ l ′2. Since x ∈ F free, we

have −K F · l ′1 ≥ 2. Since y ∈ F free, we also have −K F · l ′2 ≥ 2. If dim F = 2, this
contradicts 3 ≥ −K F · ∑

i l ′i and we are done. Suppose now that dim F = 3, then

4 ≥ −K F ·
k∑

i=1

l ′i ,

so the preceeding inequalities imply k = 2 and −K F · l ′1 = −K F · l ′2 = 2. Since
x ∈ F free there exist only finitely many rational curves C such that −K F ·C = 2 and
x ∈ C . Therefore there are at most finitely many curves l ′1 passing through x , we
denote their union by L ′

1. Since l ′2 is free and −K F · l ′2 = 2, we have Nl ′2/F � O⊕2
P1 .

It follows that Hilb(F) is smooth of dimension two at the point [l ′2] and we choose
a smooth open neighbourhood Z ⊂ Hilb(F) parametrizing deformations of l ′2 with
the same normal bundle. Let � be the universal family over Z , and let p : � → F
and q : � → Z be the natural maps. Then p is finite over its image and since
dim L ′

1 = 1 and dim Z = 2, this implies q(p−1(L ′
1) � Z . Therefore a general

chain of curves l ′1 ∪ l ′2 is not connected, a contradiction.

Remark 4.7. This lemma is the key ingredient for Lemma 4.8, and it is at this point
that we use the hypothesis on the dimension. In fact the following example shows
that Lemma 4.6 fails to hold already in dimension four: set F := P(OP3 ⊕OP3(3))

and denote by φ : F → P3 the natural projection. Then

K F = φ∗OP3(−1) ⊗ OF (−2)

is antiample, so F is Fano with Picard number two. The second Mori contraction
ψ : F → F ′ contracts the exceptional section of φ to a point and we denote by E
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the exceptional divisor. Let x and y be arbitrary points in F , then the points can be
joined by the connected rational cycle

φ−1(φ(x)) ∪ φ−1(φ(y)) ∪ lx,y,

where lx,y is the unique line in E � P3 passing through E ∩ φ−1(φ(x)) and E ∩
φ−1(φ(y)). Since NE/F � OP3(−3), we immediately see that

−K F · (φ−1(φ(x)) + φ−1(φ(y)) + lx,y) = 5 = dim F + 1.

Yet by Proposition 5.3 below, the manifold F does not contain a quasi-line.

Lemma 4.8. In the situation of the theorem, let x ∈ X be a fixed very general point
such that x ∈ F free for F = ϕ−1(ϕ(x)) a smooth fibre. Then there exists a quasi-
projective (dim X − 2)-dimensional family of degenerations of l with fixed point x
that are of the form

l1 + l2,

where l1 is a section of ϕ such that −K X · l1 = 1 and l2 ⊂ F = ϕ−1(ϕ(x)) is a
very free rational curve in F such that −K F · l2 = dim F + 1. If dim F = 3, the
curve l2 is a quasi-line2 of F.

Proof. We assume that dim X = 3 or 4, the other cases being trivial.

As seen in the proof of Lemma 4.3, for all y ∈ F \ {x} the degenerations of l
through x that connect x to y are of the form

l1 +
k′∑

i=2

αi li +
k∑

i=k′+1

αi li ,

where l1 is a section of ϕ, the connected chain of curves
∑k′

i=2 αi li is contained
in F and passes through x and y. By Lemma 4.6 the connected chain of curves
∪k′

i=2li passing through x and y is irreducible, so k′ = 2 and l2 contains x and y.
By the same lemma for y ∈ F very general, the curve l2 is very free in F and
−K F · l2 = dim F + 1. Since y varies in a family whose closure has dimension
dim X − 1, we obtain a (dim X − 2)-dimensional family of degenerations having
the stated structure.

Theorem 4.9. Let (X, l) be a smooth Fano model of dimension at most four, and
let ϕ : X → P1 be a fibration such that l is a section of ϕ. If e(X, l) = 1, then the
variety X is not minimal with respect to l.

2 By [15, II, Theorem 3.14] a general deformation of a very free curve is an embedding if the
ambient variety has dimension at least three, but only an immersion if the dimension is two.
Recall that we defined quasi-lines to be smooth curves.
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Proof. The case dim X = 2 is treated in Example 3.2, suppose now that dim X ≥ 3.
Fix a general point x ∈ X and consider the closure in C(X) of the family given by
Lemma 4.8. We obtain a (dim X − 2)-dimensional family S of degenerations of l
with fixed point x such that the general degeneration is of the form l1 + l2, where
l1 is a section of ϕ with −K X · l1 = 1 and l2 ⊂ F = ϕ−1(ϕ(x)) is a very free
rational curve in F with −K F · l2 = dim F + 1. Let � be the normalization of the
incidence variety, and let p : � → X and q : � → S be the natural maps. By
construction the fibre F := ϕ−1(ϕ(x)) is contained in p(�), but does not contain
the curves l1. Since F is a divisor this shows that p(�) has at least two irreducible
components, that is the fibre F and a component D that contains the curves l1. We
claim that D is a divisor that is dominated by the deformations of l1. Assume this
for moment, then −K X · l1 = 1 implies that the deformations of l1 form an unsplit
family, so they cover D. This implies that x /∈ D, otherwise there would exist a
non-free curve passing through x . Conclude with Lemma 2.3.

Proof of the claim. We argue by contradiction and suppose that the locus V ⊂ D
dominated by the curves l1 is not a divisor. Since V �⊂ F , the intersection
V ∩ F ⊂ F is not a divisor. Since the chain l1 ∪ l2 is connected and l1 ∩ l2 ⊂ V ∩ F ,
all the curves l2 pass through V ∩ F and x . This is impossible by [15, II, Proposi-
tion 3.7].

Remark 4.10. The proof above uses the hypothesis on the dimension of X only to
assure the existence of a family of degenerations of the form l1 + l2.

The next proposition shows how one can recover a quasi-line by smoothing
degenerations of the form l1 + l2.

Proposition 4.11. Let X be a Fano manifold of dimension n, and let ϕ : X → P1

be an elementary contraction such that the general fibre F contains a quasi-line l2,
that is

TF |l2 � OP1(2) ⊕ OP1(1)⊕n−2.

Suppose furthermore that the second elementary contraction ψ : X → Y has
length 1, and that a generator l1 of the corresponding extremal ray is a section of
ϕ. Then X contains a quasi-line that is a section of ϕ.

Proof.
Step 1. Since the second contraction ψ has length 1, it is either a conic bundle
(with singular fibres) or X is a blow-up of the smooth variety Y along a smooth
subvariety of codimension two [23, Corollary 1.4]. In both cases, there exists an
irreducible divisor D ⊂ X that is dominated by the deformations of a generator l1
of the second extremal ray and

TX |l1 � OP1(2) ⊕ O⊕n−2
P1 ⊕ OP1(−1).
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Fix now a general point x ∈ X \ D such that F = ϕ−1(ϕ(x)) is smooth and the
quasi-lines l2 passing through x dominate F . Since ϕ is an elementary contraction
of fibre type, the divisor D is strictly positive on the first extremal ray, in particular
(D ∩ F) · l2 = D · l2 > 0. Hence for a general curve l1 there exists a quasi-line
l2 such that C := l1 ∪ l2 is connected. Since l1 and l2 are smooth curves, the
intersection l1 ∩ l2 = l1 ∩ F is a reduced point. The connected curve C is a tree
of rational curves and we will follow closely the argument in [5, Proposition 4.24]
to show that C is smoothable fixing the point x (we refer to [5, Chapter 2] for the
notation and details on schemes parametrizing morphisms). Consider the inclusion
morphism f : C → X and let b ∈ l2 be the unique point such that f (b) = x . Let
π : C → (T, 0) be a smoothing3 of the tree C and let σ : T → C be a section
such that σ(0) = b. Denote by g : σ(T ) → X × T the morphism defined by
g(σ (t)) = (b, t). The T -morphisms from C to X × T extending g are parametrised
by the T -scheme MorT (C, X×T ; g) whose fibre at 0 is Mor(C, X, b �→ x). By [15,
II, Theorem 1.7] the irreducible components of MorT (C, X × T ; g) at [ f ] have
dimension at least

χ(C, f ∗TX (−b)) + dim T .

Step 2. We claim that Mor(C, X, b �→ x) has a component of the expected dimen-
sion, that is equal to χ(C, f ∗TX (−b)).

The exact sequence

0 → f ∗TX (−b − (l1 ∩ l2)) ⊗ Ol2 → f ∗TX (−b) → f ∗TX (−b) ⊗ Ol1 → 0.

immediately implies χ(C, f ∗TX (−b)) = n + 1. Moreover the general fibres of the
restriction morphism Mor(C, X, b �→ x) → Mor(l1, X) consist of quasi-lines of F
passing through two fixed points, hence are 0-dimensional. Therefore there exists
at least one component Z ⊂ Mor(C, X, b �→ x) that dominates Mor(l1, X) and its
dimension is equal to

dim Mor(l1, X)=h0(l1, f ∗TX ⊗Ol1)=h0(l1,OP1(2)⊕O⊕n−2
P1 ⊕OP1(−1))=n+1.

Therefore the fibre at 0 of the morphism MorT (C, X ×T ; g) → T has a component
of dimension χ(C, f ∗TX (−b)). Since the components of MorT (C, X × T ; g) have
dimension at least χ(C, f ∗TX (−b)) + dim T , it follows that MorT (C, X × T ; g)

has a component of the expected dimension χ(C, f ∗TX (−b)) + dim T that dom-
inates T , hence the morphism MorT (C, X × T ; g) → T is dominant at [ f ]. In
particular there exists in MorT (C, X × T ; g) an irreducible (open) curve passing
through [ f ] that dominates T . Denote by T ′ its normalization, then the morphism
T ′ → MorT (C, X × T ; g) yields a T ′-morphism

C ×T T ′ → X × T ′

which is the smoothing to a rational curve l keeping fixed f (b) = x .

3 Such a smoothing always exists and we can take T to be the unit disc in C, cf. [5, page 101].



QUASI-LINES AND THEIR DEGENERATIONS 373

Step 3. Clearly −K X · l = n + 1 and F · l = F · l1 + F · l2 = 1. If we show that
the deformations of l keeping fixed x dominate X , we conclude by [5, Proposition
4.20] that a general deformation of l is very free, so it is a quasi-line. We argue by
contradiction and suppose that this is not the case. Then the locus V of deformations
and degenerations of l is a finite union of proper subvarieties, and the divisors F and
D are irreducible components of this locus. Choose now a connected cycle l1 ∪ l2
that is not contained in any irreducible component of V . Since l1 ∪ l2 is smoothable
by some deformation l, we can choose an irreducible curve l ′ arbitrarily close to
l1 ∪ l2 that is contained in V . Yet this implies that l ′ ⊂ F ∪ D, so by irreducibility
of l ′ we have l ′ ⊂ F or l ′ ⊂ D. Therefore we have (l1 ∪ l2) ⊂ F or (l1 ∪ l2) ⊂ D
which is a contradiction.

4.2. New examples

In this section only, X is a Fano threefold with Picard number 2 which has a fibration
ϕ : X → P1 and a quasi-line l being a section of ϕ. Since X has Picard number
2, there is another Mori extremal contraction ψ : X → Y , whose fibres have
dimension at most one, hence either ψ is a conic bundle, or ψ is the blow-up of the
smooth variety Y with centre a smooth curve. We will deal with the case of conic
bundles in the Subsection 4.3. In the case where ψ is the blow-up of a smooth
variety Y with centre a smooth curve, the situation is very nice: ψ is determined by
the degenerations of l.

Corollary 4.12. Let (X, l) be a smooth Fano model of dimension three that admits
an elementary contraction ϕ : X → P1 such that l is a section of ϕ. Assume
that the second elementary Mori contraction is a birational contraction ψ : X →
Y . Then both extremal rays of NE(X) are spanned by irreducible component of
degenerations of l.

Proof. By Lemma 4.8 there exists a positive-dimensional quasi-projective family
of degenerations of l with fixed point a general point x that are of the form

l1 + l2,

where l1 is a section of ϕ such that −K X · l1 = 1 and l2 ⊂ F = ϕ−1(ϕ(x)) satisfies
−K F · l2 = 3. In particular, the extremal ray defining ϕ is spanned by l2.

Let C be a generator of the extremal ray contracted by ψ , then F · C = 1
by [16, Proposition 6]. Let E be the exceptional divisor of ψ , then there exists
rational numbers a and b such that E = a(−K X ) + bF . Hence

E · C = −1 = a + b

E · l = 4a + b

E · l2 = 3a.

This implies E · l1 = E · l − E · l2 = a + b = −1 = E · C . Since furthermore
−K X · l1 = 1 = −K X · C and X has Picard number 2, this implies that l1 and C
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have the same numerical class. It follows that l1 is contracted by ψ , so it generates
the second extremal ray.

Examples 4.13. Under the assumptions of the corollary, and using again [16, 17],
the threefold Y is Fano of index r ≥ 2 and easy computations show that a = r − 1,
therefore b = −r and E · l = 3r − 4. Moreover, since E · l1 = 1, the mor-
phism ψ |F : F → F ′ = ψ(F) is an isomorphism for any general ϕ-fibre F and
F ′ ∈ |(r −1)OY (1)|. Moreover, we know (by [16,17] again) that Y is either P3, Q3
or one of the five Fano threefolds Vd (1 ≤ d ≤ 5) of index 2 and Picard number 1.
Here are three explicit examples:

(1) Let ψ : X → P3 be the blow-up of P3 with centre the transverse intersection
C = S1 ∩ S2 of two smooth cubic surfaces S1 and S2. Then the strict transform
l of a normal twisted rational cubic curve meeting C transversaly in exactly
8 points is a quasi-line of X , and a section of the projection ϕ : X → P1

corresponding to the pencil defined by S1 and S2.
(2) Let ψ : X → Q3 ⊂ P4 be the blow-up of the 3-dimensional quadric Q3 with

centre the transverse intersection C = S1 ∩ S2 of two smooth members S1 and
S2 of |OQ3(2)|. Then the strict transform l of a normal twisted rational cubic
curve meeting C transversally in exactly 5 points is a quasi-line of X , and a
section of the projection ϕ : X → P1 corresponding to the pencil defined by
S1 and S2.

(3) Let V3 be a smooth cubic hypersurface of P4, and let ω ⊂ V3 be a nor-
mal twisted rational cubic contained in V3. Denote by P3 the hyperplane in
P4 generated by ω. Let finally l ′ be a chord of ω (i.e. a line in P4 meet-
ing ω in two points) and P1 and P2 be two general hyperplanes in P4 such
that l ′ = P1 ∩ P2 ∩ P3. Let ψ : X → V3 be the blow-up of V3 with centre
C = V3 ∩ P1 ∩ P2 (C is therefore a plane cubic). Since ω∩C ⊂ V3 ∩l ′ ⊂ ω∩l ′,
the curve ω meets C in exactly two points. The strict transform of ω is a quasi-
line of X , section of the projection ϕ : X → P1 corresponding to the pencil
defined by V3 ∩ P1 and V3 ∩ P2.

4.3. Conic bundles

The variety P(TP2) is a Fano threefold that contains a quasi-line l such that the
natural projection to P2 induces a morphism of models (P(TP2), l) → (P2, line).
One can obtain conic bundles with the same property by blowing-up P(TP2) along
a smooth curve, but such a manifold would of course not be minimal. We will now
show that this is what always happens.

Theorem 4.14. Let ϕ : (X, l) → (Y, ϕ(l)) be a morphism of smooth models, and
suppose that ϕ is flat of relative dimension 1. Assume furthermore that:

(1) X is minimal with respect to l and e(X, l) = 1,
(2) there exists a big and nef line bundle H on Y such that ϕ∗H · l = 1.

Then Y � Pn−1 and X � P(E), where E is a rank two vector bundle over Y .
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Proof. Since X is minimal with respect to l, the manifold Y is minimal with respect
to ϕ(l). By assumption (2) and Theorem 1.5, we get that Y � Pn−1 and ϕ(l) is a
line. Suppose first that ϕ is a smooth morphism, so all the fibres are isomorphic to
P1. Therefore ϕ is locally analytically trivial and since the Brauer group of Pn−1

vanishes, we see that X is the projectivisation of a rank two bundle.

We will now argue by contradiction and suppose that ϕ is not a smooth mor-
phism. We claim that in this case there exists an effective divisor � in Y such
that the general ϕ-fibre over � is reducible. Since the general fibre is a rational
curve [12, Theorem 1.12], this is clear if ϕ is elementary (that is ρ(X)−ρ(Y ) = 1):
ϕ is a conic bundle and the discriminant locus is such a �. If ρ(X) − ρ(Y ) > 1,
just apply the relative contraction theorem [14, Theorem 4-1-1] to get an elemen-
tary contraction µ : X → X ′ that is a Y -morphism. It is not hard to see that µ is
birational and by flatness of ϕ, all the fibres of µ have dimension at most 1, so X ′ is
smooth and, by Ando’s theorem [1, Theorem 2.1], the morphism µ is the blow-up
of a smooth codimension 2 subvariety Z such that the image of Z in Y is a divi-
sor. In particular there exists a divisor � ⊂ Y such that the general fibre over � is
reducible.

Fix now an irreducible divisor � ⊂ Y such that the general ϕ-fibre over � is
reducible, fix also a general point x ∈ X such that x /∈ ϕ−1(�). We consider the
deformations of l with fixed point x . Recall the notation of the basic Diagram 2.1.

Ux

q

��

p �� X

Hx

By Lemma 2.3, we have reached a contradiction if we show that an irreducible
component D ⊂ ϕ−1(�) is covered by irreducible components of degenerations
with fixed point x .

Let y be a general point of �, then the fibre ϕ−1(y) has at least one singular
point z at the intersection of two components. Since ϕ∗H · l = 1, every quasi-
line l parametrised by Hx is a subsection of ϕ, in particular it does not meet the
singular points of fibres. Since the map p is surjective, this shows that there exists
a degeneration l ∼ ∑k

i=1 αi li that connects x to z. Since ϕ∗H · ∑k
i=1 αi li = 1, this

cycle can be written l1 + ∑k
i≥2 αi li with ϕ∗H · l1 = 1 and ϕ∗H · li = 0 for i ≥ 2.

Since ϕ∗H · l1 = 1, the curve l1 is a subsection of a line, so it does not pass
through z. Thus there exists a j ≥ 2 such that z ∈ l j . Since ϕ∗H · l j = 0, this
implies l j ⊂ ϕ−1(ϕ(z)) = ϕ−1(y). We have shown that for a general point y ∈ �,
there exists a component of a degeneration of l contained in ϕ−1(y). Therefore there
exists at least one irreducible component of ϕ−1(�) that is dominated by irreducible
components of degenerations of l. Lemma 2.3 shows that this is a contradiction.
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The following examples show the importance of the assumption that e(X,l)=1
for the theorem.

Examples 4.15.

(1) Let X be a double cover of P1 × P2 whose branch locus is a general divisor
of bidegree (2, 2). The threefold X is Fano with Picard number 2, denote by
ψ : X → P1 and ϕ : X → P2 the two natural projections. The map ϕ is
a conic bundle, whose discriminant locus is a quartic curve in P2 and the map
ψ is a quadric bundle. Let l be a general line in P2 and set Sl := ϕ−1(l). The
surface Sl is a del Pezzo surface and the induced map ϕ : Sl → l � P1 has
exactly 4 singular fibres. More precisely, we have a diagram

Sl
ϕ

����
��

��
��

�
µ �� F1

��

µ0 �� P2

l � P1

(4.1)

where µ0 is the blow-up of a point x0 ∈ P2 and µ is the blow-up of 4 points
p1, . . . , p4 in different fibres. Set π := µ0 ◦ µ : Sl → P2, and let d be a
general line in P2 and ω = π−1(d). Clearly ω is a quasi-line of Sl and a section
of ϕ : Sl → l, therefore ω is a quasi-line of X by Lemma 4.1. One sees that
(X, ω) satisfies all hypothesis of Theorem 4.14 except e(X, ω) = 1: if x and
x ′ are two general points of ω, take a cubic curve in P , passing through x , x ′,
µ0(pi ) for i = 1, . . . , 4 with multiplicity 1, and through x0 with multiplicity 2.
Then the strict transform of this cubic is also a quasi-line of Sl and a section of
ϕ : Sl → l, hence is also a quasi-line of X by Lemma 4.1.
Note that these two quasi-lines do not belong to the same family as quasi-lines
of Sl but belong to the same family as quasi-lines of X !

(2) Exactly in the same manner, let X be a double cover of P1×P2 whose branch lo-
cus is a divisor of bidegree (2, 4). The threefold X is Fano with Picard number
2, denote by ψ : X → P1 and ϕ : X → P2 the two natural projections. The
map ϕ is a conic bundle, whose discriminant is a curve of degree 8 in P2 and the
map ψ is a del Pezzo fibration. Let l be a general line in P2 and Sl := ϕ−1(l).
The surface Sl is a surface with nef anti-canonical bundle (isomorphic to a P2

blown-up at 9 general points) and the induced map ϕ : Sl → l � P1 has
exactly 8 singular fibres. One can show that Sl contains a quasi-line, section of
ϕ : Sl → l, hence a quasi-line of X .

5. Fano bundles

Theorem 4.14 shows that projective bundles over Pm play a special role in the clas-
sification of models (X, l) with e(X, l) = 1, in particular if X is minimal with
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respect to l. More generally we might ask when a Fano manifold that is a pro-
jectivised bundle P(E) (a so-called Fano bundle) over Pm contains a quasi-line.
Classification results and vector bundle techniques will allow us to give a complete
answer if rk E = 2. Together with Theorem 4.14, this also ends the proof of Theo-
rem C.

Notation. Let ϕ : P(E) → Pm be a projectivised bundle over Pm (we use here
Grothendieck’s definition: P(E) is the variety of hyperplanes of E). Throughout
the whole section, we will denote by H a hyperplane divisor in Pm , and by ξE the
tautological divisor on P(E). If l ⊂ P(E) is a quasi-line, we will use frequently
ϕ∗H · l ≥ 1.

Proposition 5.1.

1. Let (X, l) be a smooth model, and suppose that X is minimal with respect to l.
Suppose furthermore that X � P(E) for some rank 2 vector bundle E over the
projective space Pm. Then the vector bundle E is stable.

2. Let E be a semistable vector bundle of rank 2 with odd first Chern class over the
projective space Pm. Then X � P(E) contains a quasi-line l and the natural
projection ϕ : X → Pm is a morphism of models (X, l) → (Pm, line).

Proof. For the first statement, we argue by contradiction and suppose that E is not
stable. Then, up to twisting E with a line bundle, we can suppose without loss of
generality that −1 ≤ c1(E) ≤ 0 and h0(X, E) > 0 (cf. [9, Remark 3.0.1]). Let
ϕ : X → Pm be the projection map, then

−K X = (m + 1 − c1(E))ϕ∗H + 2ξE .

It follows that

m + 2 = −K X · l = (m + 1 − c1(E))ϕ∗H · l + 2ξE · l ≥ m + 1 + 2ξE · l.

Since h0(X, ξE ) = h0(Pm, E) > 0 and X is minimal, we have ξE · l ≥ 1. This
implies

m + 2 ≥ m + 1 + 2ξE · l ≥ m + 1 + 2,

a contradiction.
For the second statement, let l ′ ⊂ Pm be a general line. By the Grauert-Mülich

theorem [19, page 206], we have E |l ′ � OP1(a1) ⊕ OP1(a2) with |a2 − a1| ≤ 1.
Since E has an odd first Chern class, we can suppose up to renumbering that
a2 = a1 + 1. By [12, Proposition 4.2] there exists a quasi-line l on X such that
ϕ|l : l → l ′ is an isomorphism.

Remark 5.2. By a well-known conjecture of Hartshorne [7], there are no stable
rank 2 vector bundles over Pm if m ≥ 7. This shows (at least conjecturally) that
the minimality with respect to a quasi-line is rather restrictive. Note however that
the fourfold P(TP2(−1) ⊕OP2) contains a quasi-line and is minimal, but the vector
bundle TP2(−1) ⊕ OP2 isn’t even semistable. This shows that for a generalisation
of Proposition 5.1 to bundles of higher rank new ideas are necesssary.
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Proposition 5.3. Let E � ⊕r+1
i=1OPm (ai ) be a sum of line bundles on Pm such that

a1 ≤ a2 ≤ . . . ≤ ar+1. Set X := P(E), then X contains a quasi-line l if and only if
up to twisting

E � OPm (−1)⊕r ⊕ OPm .

In this case the natural map ϕ : X → Pm is a morphism of models (X, l) →
(Pm, line).

Proof. The if part is immediate from [12, Proposition 4.2], for the only if part we
follow closely the proof of [12, Proposition 4.1]. We have

−K X = (m + 1 −
r+1∑

i=1

ai )ϕ
∗H + (r + 1)ξE .

and
h0(X,OX (ξE − ar+1ϕ

∗H)) = h0(Pm, E ⊗ OPm (−ar+1)) > 0,

so the divisor ξE − ar+1ϕ
∗H is linearly equivalent to an effective divisor. In partic-

ular
(ξE − ar+1ϕ

∗H) · l ≥ 0.

We want to show that even (ξE − ar+1ϕ
∗H) · l = 0 and argue by contradiction.

Then
(ξE − aiϕ

∗H) · l ≥ (ξE − ar+1ϕ
∗H) · l ≥ 1

for all i = 1, . . . r + 1, so

m + r + 1 = −K X · l = (m + 1 −
r+1∑

i=1

ai )ϕ
∗H · l + (r + 1)ξE · l

= (m + 1)ϕ∗H · l +
r+1∑

i=1

(ξE − aiϕ
∗H) · l

≥ (m + 1) + (r + 1)

yields a contradiction. So (ξE − ar+1ϕ
∗H) · l = 0 and

h0(X,O(ξE − ar+1ϕ
∗H)) = h0(Pm, E ⊗ O(−ar+1)) = 1,

since a quasi-line has strictly positive intersection number with every divisor that
moves. This implies that ai < ar+1 for i = 1, . . . , r , so

(ξE − aiϕ
∗H) · l > (ξE − ar+1ϕ

∗H) · l = 0

for all i = 1, . . . r . We repeat the preceeding computation

m + r + 1 = −K X · l = (m + 1)ϕ∗H · l +
r+1∑

i=1

(ξE − aiϕ
∗H) · l

≥ (m + 1)ϕ∗H · l + r,
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so ϕ∗H · l = 1. This implies that ϕ(l) is a line in Pm and ϕ|l : l → ϕ(l) is an
isomorphism. We conclude with a second application of [12, Proposition 4.2].

Corollary 5.4. Let (X, l) be a smooth Fano model. Suppose that X � P(E) for
some rank 2 vector bundle E over the projective space Pm with m ≥ 3. Then up to
twisting with a line bundle we have

E � OPm (−1) ⊕ OPm ,

so X is the blow-up of Pm+1 in a point and l is the preimage of a line in Pm+1. In
particular X is not minimal.

Proof.
1st case: m ≥ 4. Since E is a rank 2 Fano bundle, it splits by [2, Main theorem] in
a direct sum of line bundles. Conclude with Proposition 5.3.

2nd case: m = 3. We normalise E such that c1(E) = 0 or c1(E) = −1. If the first
Chern class is zero, we have

−K X = 4ϕ∗H + 2ξE .

In particular X has index 2, so it is clear that X does not contain a quasi-line
(−K X · l = 5). If c1(E) = −1, the classification of Fano bundles of rank 2 on
P3 [21, Theorem 2.1], implies that E � OP3⊕OP3(−1) or E � OP3(−2)⊕OP3(1).
The second case is excluded by Proposition 5.3.

Proposition 5.5. Let (X, l) be a smooth Fano model. Suppose that X � P(E) for
some vector bundle E of rank r over the projective space P2. Then up to twisting
with a line bundle we have either

E � O⊕r−1
P2 ⊕ OP2(1),

or E is defined by an exact sequence

0 → OP2(−1)⊕2 → O⊕r+2
P2 → E → 0,

or
E � TP2(−1) ⊕ O⊕r−2

P2 ,

or E is defined by an exact sequence

0 → OP2(−2) → Or+1
P2 → E → 0.

Vice versa, if E is a vector bundle over P2 as above, then P(E) is Fano and contains
a quasi-line.

In the first two cases there exists a birational morphism X → Pr+1 that in-
duces an equivalence of models (X, l) � (Pr+1, line); in the last two cases X is
minimal with respect to l. In the third case e(X, l) = 1 and in the fourth case
e(X, l) > 1.
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Proof. Denote by ϕ : X → P2 the projection map. We normalise the vector bun-
dle E such that 0 ≤ c1(E) ≤ r − 1, then by [22, 1.6.] the Fano condition implies
0 ≤ c1(E) ≤ 2. Furthermore the vector bundle E is globally generated [22, Propo-
sition 2.1]. Since E can’t be trivial (the product Pr−1×P2 � P(E) does not contain
a quasi-line), this implies

(∗) h0(X,OX (ξE )) = h0(P2, E) ≥ r + 1,

in particular
ξE · l ≥ 1.

Therefore ϕ∗OP2(3 − c1(E)) · l ≥ 1 implies

r + 2 = −K X · l

= (3 − c1(E))ϕ∗H · l + rξE · l

≥ 1 + rξE · l.

Hence ξE ·l=1, since OX(ξE ) is globally generated it induces by [12,Theorem 1.12]
a surjective morphism with connected fibres ψ : X → PN := P(H0(X,OX (ξE )))

that induces a morphism of models (X, l) → (PN , line). In particular

h0(X,OP(E)(1)) = h0(P2, E) ≤ dim X + 1 = r + 2 (∗∗)

and equality holds if and only if ψ induces an equivalence of models
(X, l) � (Pr+1, line). In view of the inequalities (∗) and (∗∗) we have to treat
two cases.

The case h0(P2, E) = r + 2. Going through the list in [22, Theorem ] yields that
in this case, we have E � O⊕r−1

P2 ⊕ OP2(1) or E is defined by an exact sequence

0 → OP2(−1)⊕2 → O⊕r+2
P2 → E → 0.

In both cases, the manifold X is a blow-up of Pr+1, so it is clear that X contains a
quasi-line and is not minimal with respect to it.

The case h0(P2, E) = r + 1. In this case ψ gives a fibration of relative dimension
one onto Pr that induces a morphism of models (X, l) → (Pr , line). Using the list
in [22, Theorem ], we then see that E � TP2(−1) ⊕ O⊕r−2

P2 or E is defined by an
exact sequence

0 → OP2(−2) → O⊕r+1
P2 → E → 0.

In the first case c1(E) = 1, so

r + 2 = −K X · l = 2ϕ∗H · l + r.
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implies that ϕ∗H · l = 1. Hence ϕ(l) is a line in P2 and l is a section. Vice
versa [12, Proposition 4.2] shows that P(TP2(−1) ⊕ O⊕r−2

P2 ) contains a quasi-line

l that is a subsection of a line in P2. Since the two elementary contractions are of
fibre type, the manifold X is minimal with respect to l by Lemma 3.1. The equality
e(X, l) = 1 follows from the remark below.

In the second case X can be realised as a smooth divisor of degree (2,1) in
P2 × Pr [22, Theorem], and ϕ (respectively ψ) identifies to the projection on the
first (respectively second) factor. Since the property of containing a quasi-line is
stable under small deformations [3, Proposition 3.10], we can choose X sufficiently
general such that ψ has no higher-dimensional fibres, i.e. yields a conic bundle
structure on X and a straightforward computation shows that the discriminant locus
has degree 3. By adjunction ω∗

X � OX (1, r), so if l ′ ⊂ Pr is a general line and
S := ψ−1(l ′) is its preimage, repeated adjunction yields ω∗

S � OS(1, 1). Hence S
is a del Pezzo surface and ψ |S : S → l ′ has three singular fibres. The surface S is a
blow-up of P2 in four points, so a general line in P2 yields a quasi-line l in S that is
a section of ψ |S . By Lemma 4.1 this shows that l is a quasi-line in X . Since the two
elementary contractions are of fibre type, the manifold X is minimal with respect
to l by Lemma 3.1. Since ψ is not a smooth morphism, Theorem 4.14 shows that
e(X, l) > 1.

Remark 5.6. Let ϕ : (X, l) → (Y, ϕ(l)) be a morphism of smooth models that is a
fibration. Choose a sufficiently general deformation of l such that Z := ϕ−1(ϕ(l))
is smooth. We define

e(Z) :=
∑

l∈H
e(X, l),

where the sum goes over all the irreducible components of the Chow scheme such
that the general point parametrises a quasi-line. Then it is not hard to check (see [11,
Lemma 5.9] for the special case of a projective bundle) that

e(X, l) ≤ e(Z) · e(Y, ϕ(l)).

In particular if X � P(E) for a vector bundle E of rank r over Y , then
Z � P(O⊕r−1

P1
⊕ OP1(1)) [12, Proposition 4.1, Proposition 4.2], so e(Z) = 1

and e(X, l) ≤ e(Y, ϕ(l)).

The fourth case of the proposition shows that not all the Fano bundles over P2

satisfy e(X, l) = 1. In particular X → P2 is not a morphism of models!

Towards a classification of Fano models? It is an obvious question to ask for
a complete list of Fano models (X, l) such that X is minimal with respect to l.
This turns out to be a rather lengthy exercice, in fact using the techniques in this
paper (in particular the Examples 4.15) one can show that out of the nine primitive
Fano threefolds with Picard number two, all but P2 × P1 and P(OP2 ⊕ OP2(2))

contain a quasi-line. Among these models, five have only fibre type contractions,
so they are minimal with respect to the quasi-line (Lemma 3.1). Subsection 4.2
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shows how to obtain more examples in the non-primitive case. This convinces us
that classification efforts should concentrate on the case e(X, l) = 1. In this case we
only know one example with Picard number at least two: the flag manifold P(TP2).
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