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The BV-energy of maps into a manifold:
relaxation and density results

MARIANO GIAQUINTA AND DOMENICO MUCCI

Abstract. Let Y be a smooth compact oriented Riemannian manifold without
boundary, and assume that its 1-homology group has no torsion. Weak limits of
graphs of smooth maps uk : Bn → Y with equibounded total variation give
rise to equivalence classes of Cartesian currents in cart1,1(Bn × Y) for which
we introduce a natural BV -energy. Assume moreover that the first homotopy
group of Y is commutative. In any dimension n we prove that every element
T in cart1,1(Bn × Y) can be approximated weakly in the sense of currents by
a sequence of graphs of smooth maps uk : Bn → Y with total variation con-
verging to the BV -energy of T . As a consequence, we characterize the lower
semicontinuous envelope of functions of bounded variations from Bn into Y .

Mathematics Subject Classification (2000): 49Q15 (primary); 49Q20 (second-
ary).

In this paper we deal with sequences of smooth maps uk : Bn → Y with equi-
bounded total variation

sup
k

E1,1(uk) < ∞ , E1,1(uk) :=
∫

Bn
|Duk | dx

and their limit points. Here Bn is the unit ball in Rn and Y is a smooth oriented
Riemannian manifold of dimension M ≥ 1, isometrically embedded in RN for
some N ≥ 2. We shall assume that Y is compact, connected, without boundary. In
addition, we assume that the integral 1-homology group H1(Y) := H1(Y; Z) has
no torsion.

Modulo passing to a subsequence the (n, 1)-currents Guk , integration over
the graphs of uk of n-forms with at most one vertical differential, converge to a
current T ∈ cart1,1(Bn × Y), see Section 2 below. To every T ∈ cart1,1(Bn × Y)

it corresponds a function uT ∈ BV (Bn,Y), i.e., uT ∈ BV (Bn, RN ) such that
uT (x) ∈ Y for Ln-a.e. x ∈ Bn , compare [14, Vol. I, Section 4.2] [14, Vol. II,
Section 5.4]. Also, the weak convergence Guk ⇀ T yields the convergence uk ⇀

uT weakly in the BV -sense.
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In order to analyze the weak limit currents, it is relevant first to consider the
case n = 1. Therefore in Section 1 we study some of the structure properties of
1-dimensional Cartesian currents in B1 × Y , i.e., of currents in cart(B1 × RN )

with support spt T ⊂ B
1 × Y , compare [14, Vol. I]. In the simple case Y = S1,

the unit circle in R2, and in any dimension n, for any current T ∈ cart(Bn × S1)

we can find a sequence of smooth maps {uk} ⊂ C1(Bn, S1) such that Guk weakly
converges to T and the area of the graph of the uk’s converges to the mass of
T , i.e., M(Guk ) → M(T ), see [13] and [14, Vol. II, Section 6.2.2]. However, in
case of general target manifolds, and even in dimension n = 1, a gap phenomenon
occurs. More precisely, setting

M̃(T ) := inf

{
lim inf
k→∞ M(Guk )|{uk}⊂C1(B1,Y), Guk ⇀T weakly in D1(B1×Y)

}
,

there exist currents T ∈ cart(B1 × Y) for which

M(T ) < M̃(T ) ,

i.e., for every smooth sequence {uk} ⊂ C1(B1,Y) such that Guk ⇀ T weakly in
D1(B1 × Y) we have that

lim inf
k→∞ M(Guk ) ≥ M(T ) + C ,

where C > 0 is an absolute constant and, we recall, the mass of Guk is the area of
the graph of uk

M(Guk ) = A(uk) :=
∫

B1

√
1 + |Duk |2 dx .

In order to deal with this gap phenomenon, we introduce the class cart1,1(B1 × Y)

of equivalence classes of currents in cart(B1 × Y), where the equivalence relation
is given by

T ∼ T̃ ⇐⇒ T (ω) = T̃ (ω) ∀ ω ∈ Z1,1(B1 × Y) ,

see Definition 1.6. Here Z1,1(B1 × Y) denotes the class of smooth forms ω ∈
D1(B1 × Y) such that dyω

(1) = 0, where d = dx + dy denotes the splitting
into a horizontal and a vertical differential, and ω(1) is the component of ω with
exactly one vertical differential. In other words cart1,1(B1 × Y) is the class of
vertical homological representatives of the elements of cart(B1 × Y). Notice that
if Y = S1, actually cart1,1(B1 × S1) agrees with the class cart(B1 × S1). We then
introduce on cart1,1(B1 × Y) the following energy

A(T ) :=
∫

B1

√
1 + |∇uT (x)|2 dx +

∣∣∣DC uT

∣∣∣ (B1) +
∑

x∈Jc(T )

LT (x) ,



THE BV-ENERGY OF MAPS INTO A MANIFOLD 485

where ∇uT and DC uT are respectively the absolutely continuous and the Cantor
part of the distributional derivative of the underlying function uT ∈ BV (B1,Y),
and the countable set Jc(T ) is the union

Jc(T ) := JuT ∪ {xi : i = 1, . . . , I }
of the discontinuity set JuT of uT and of the finite set of points xi where the mass
of T concentrates.

In the above formula, LT (x) denotes the minimal length L(γ ) among all Lip-
schitz curves γ : [0, 1] → Y , with end points equal to the one-sided approximate
limits of uT on x ∈ Jc(T ), such that their image current γ#[[ (0, 1) ]] is equal to
the 1-dimensional restriction π̂#(T {x} × Y) of T over the point x . In the case
Y = S1, it turns out that A(T ) agrees with the mass of T , compare [13] and [14,
Vol. II, Section 6.2.2].

We will show that the functional T �→ A(T ) is lower semicontinuous in
cart1,1(B1 × Y), Theorem 1.7, and that for every T there exists a sequence of
smooth maps {uk} ⊂ C1(B1,Y) such that Guk ⇀ T and M(Guk ) → A(T ) as
k → ∞, Theorem 1.8. As a consequence, we conclude that A(T ) coincides with
the relaxed area functional

Ã(T ) := inf

{
lim inf
k→∞ A(uk) | {uk} ⊂ C1(B1,Y) , Guk ⇀ T

}
.

In Section 2, we deal with the n-dimensional case, n ≥ 2, introducing the class
cart1,1(Bn × Y) of vertical homological representatives. The BV -energy of a cur-
rent T ∈ cart1,1(Bn × Y) is then defined by

E1,1(T ) :=
∫

Bn
|∇uT (x)| dx + |DC uT |(Bn) +

∫
Jc(T )

LT (x) dHn−1(x) ,

see Definition 2.10, where Jc(T ) is the countably Hn−1-rectifiable subset of Bn

given by the union of the Jump set JuT of uT and of the (n − 1)-rectifiable set
of mass-concentration of T . Finally, the integrand LT (x) is defined as above, by
taking into account that the 1-dimensional restriction π̂#(T {x} × Y) of T is
well-defined for Hn−1-a.e. point x ∈ Jc(T ).

Notice that, if T = Gu , where u : Bn → Y is smooth or at least in W 1,1, then
E1,1(Gu) = E1,1(u). Moreover, in the case Y = S1, we have cart1,1(Bn × S1) =
cart(Bn × S1) and, due to the absence of gap phenomenon, the functional E1,1(T )

agrees with the parametric variational integral associated to the total variation in-
tegral, see Definition 2.5, and can be dealt with as in [13], see also [14, Vol. II,
Section 6.2], [8], [19]. The functional T �→ E1,1(T ) turns out to be lower semicon-
tinuous in cart1,1(Bn × Y), see Theorem 2.12 and Section 3. Moreover, assuming
in addition that the first homotopy group π1(Y) is commutative, in Section 4 and
Section 5 we will prove in any dimension n ≥ 2 that for every T ∈ cart1,1(Bn ×Y)

there exists a sequence of smooth maps {uk} ⊂ C1(Bn,Y) such that Guk ⇀ T
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and E1,1(uk) → E1,1(T ) as k → ∞, Theorem 2.13. Consequently, we show that a
closure-compactness property holds in cart1,1(Bn × Y), Theorem 2.17. We stress
that the commutativity hypothesis on π1(Y) cannot be removed, see Remark 5.2.

In Section 6, extending the classical notion of total variation of vector-valued
maps, compare e.g. [1], we introduce in a natural way the total variation of func-
tions u ∈ BV (Bn,Y), given by

ET V (u) :=
∫

Bn
|∇u(x)| dx +

∣∣∣DC u
∣∣∣ (Bn) +

∫
Ju

H1(lx ) dHn−1(x) ,

where, for any x ∈ Ju , we let H1(lx ) denote the length of a geodesic arc lx in
Y with initial and final points u−(x) and u+(x). Extending the density result of
Bethuel [5], in Theorem 6.5 we will show that for every u ∈ BV (Bn,Y) we can
find a sequence of maps {uk} ⊂ R∞

1 (Bn,Y) such that uk ⇀ u as k → ∞ weakly
in the BV -sense and

lim
k→∞

∫
Bn

|Duk | dx = ET V (u) .

If n = 1, the class R∞
1 (Bn,Y) agrees with C1(Bn,Y). If n ≥ 2, it is given by

all the maps u ∈ W 1,1(Bn,Y) which are smooth except on a singular set which is
discrete, if n = 2, and is the finite union of smooth (n − 2)-dimensional subsets
of Bn with smooth boundary, if n ≥ 3. Therefore, if π1(Y) = 0, we obtain that
smooth maps in C1(Bn,Y) are dense in BV (Bn,Y) in the strong sense above
mentioned.

However, in Section 7 we will show that ET V (u) does not agree with the
relaxed of the total variation

ẼT V(u):= inf

{
lim inf
k→∞

∫
Bn

|Duk |dx| {uk}⊂C1(Bn,Y), uk ⇀u weakly in the BV-sense

}
if n ≥ 2, and we have ẼT V (u) < ∞, Theorem 7.3, and that

ẼT V (u) = inf{E1,1(T ) | T ∈ Tu} ,

Theorem 7.4, where Tu is the class of Cartesian currents T in cart1,1(Bn × Y)

with underlying BV -function uT equal to u, this way obtaining the representation
formula

ẼT V (u) =
∫

Bn
|∇u(x)| dx+

∣∣∣DC u
∣∣∣ (Bn)+inf

{∫
Jc(T )

LT (x)dHn−1(x) | T ∈ Tu

}
.

We finally specify the above relaxation results to u ∈ W 1,1(Bn,Y) and/or Y = S1,
recovering in particular previous results in [13, 8], and [19].
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ration of this paper.
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1. Cartesian currents in dimension one

In this section we discuss some features of 1-dimensional Cartesian currents in
B1 × Y and, in particular, we discuss a gap phenomenon and the relaxed area
functional.

First let us introduce a few notation about BV -functions and Cartesian currents
in the general context Bn × Y .

Vector valued BV -functions. Let u : Bn → RN be a function in BV (Bn, RN ),
i.e., u = (u1, . . . uN ) with all components u j ∈ BV (Bn). The Jump set of u is the
countably Hn−1-rectifiable set Ju in Bn given by the union of the complements of
the Lebesgue sets of the u j ’s. Let ν = νu(x) be a unit vector in Rn orthogonal to
Ju at Hn−1-a.e. point x ∈ Ju . Let u±(x) denote the one-sided approximate limits
of u on Ju , so that for Hn−1-a.e. point x ∈ Ju

lim
ρ→0+ ρ−n

∫
B±

ρ (x)

|u(x) − u±(x)| dx = 0 ,

where B±
ρ (x) := {y ∈ Bρ(x) : ±〈y − x, ν(x)〉 ≥ 0}. Note that a change of

sign of ν induces a permutation of u+ and u− and that only for scalar functions
there is a canonical choice of the sign of ν which ensures that u+(x) > u−(x).
The distributional derivative of u is the sum of a “gradient” measure, which is ab-
solutely continuous with respect to the Lebesgue measure, of a “jump” measure,
concentrated on a set that is σ -finite with respect to the Hn−1-measure, and of a
“Cantor-type” measure. More precisely,

Du = Dau + D J u + DC u ,

where

Dau = ∇u · dx , D J u = (u+(x) − u−(x)) ⊗ ν(x)Hn−1 Ju ,

∇u := (∇1u, . . . , ∇nu) being the approximate gradient of u, compare e.g. [2] or
[14, Vol. I]. We also recall that {uk} is said to converge to u weakly in the BV -
sense, uk ⇀ u, if uk → u strongly in L1(Bn, RN ) and Duk ⇀ Du weakly in
the sense of (vector-valued) measures. We will finally denote

BV (Bn,Y) := {u ∈ BV (Bn, R
N ) | u(x) ∈ Y for Ln-a.e. x ∈ Bn} .

Cartesian currents. The class of Cartesian currents cart(Bn × RN ), compare
[14, Vol. I], is defined as the class of integer multiplicity rectifiable currents T in
Rn(Bn × RN ) which have no inner boundary, ∂T Bn × RN = 0, have finite
mass, M(T ) < ∞, and are such that

‖T ‖1 < ∞ , π#(T ) = [[ Bn ]] and T 00 ≥ 0 ,
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where

‖T ‖1 := sup{T (ϕ(x, y)|y| dx) | ϕ ∈ C0
c (Bn × R

N ) and ‖ϕ‖ ≤ 1}

and T 00 is the Radon measure in Bn × RN given by

T 00(ϕ(x, y)) = T (ϕ(x, y) dx) ∀ ϕ ∈ C0
c (Bn × R

N ) .

Finally, here and in the sequel π : Rn+N → Rn and π̂ : Rn+N → RN denote the
projections onto the first n and the last N coordinates, respectively.

It is shown in [14, Vol. I] that for every T ∈ cart(Bn × RN ) there exists a
function uT ∈ BV (Bn, RN ) such that

T (φ(x, y) dx) =
∫

Bn
φ(x, uT (x)) dx (1.1)

for all φ ∈ C0(Bn × RN ) such that |φ(x, y)| ≤ C (1 + |y|), and

(−1)n−i T (ϕ(x)d̂xi ∧ dy j ) = 〈Di u
j
T , ϕ〉 := −

∫
Bn

u j
T (x) · Diϕ(x) dx

for all ϕ ∈ C1
c (Bn), where

d̂xi := dx1 ∧ · · · dxi−1 ∧ dxi−1 ∧ · · · ∧ dxn .

In particular, we have ‖T ‖1 = ‖uT ‖L1(Bn,RN ).

Definition 1.1. If n = 1 we set

cart(B1 × Y) :=
{

T ∈ cart(B1 × R
N ) | spt T ⊂ B

1 × Y
}

.

Notice that the class cart(B1 ×Y) contains the weak limits of sequences of graphs
of smooth maps uk : B1 → Y with equibounded W 1,1-energies. Moreover, it is
closed under weak convergence in D1(B1 ×Y) with equibounded masses. Finally,
the BV -function uT associated to currents T in cart(B1 × Y) clearly belongs to
BV (B1,Y).

Restriction over one point. Let T ∈ cart(B1 × Y). Since T has finite mass,
η �→ T (χBr (x) ∧ η), where x ∈ B1 and 0 < r < 1 − |x |, defines a current in
D1(Y). The 1-dimensional restriction of T over the point x

π̂# (T {x} × Y) ∈ D1(Y)

is the limit

π̂#(T {x} × Y)(η) := lim
r→0+ T (χBr (x) ∧ η) , η ∈ D1(Y) .
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Canonical decomposition. There is a canonical way to decompose a current T ∈
cart(B1 × Y). We first observe that the 1-dimensional restriction of T over any
point x in the jump set JuT of uT is given by

π̂#(T {x} × Y) = x ,

x being a 1-dimensional integral chain on Y such that ∂x = δu+
T (x) − δu−

T (x),

where u+
T (x) and u−

T (x) here and in the sequel denote the right and left limits of
uT at x , respectively. Therefore, by applying Federer’s decomposition theorem
[9], we find an indecomposable 1-dimensional integral chain γx on Y , satisfying
∂γx = δu+

T (x) − δu−
T (x), and an integral 1-cycle Cx in Y , satisfying ∂Cx = 0, such

that
x = γx + Cx and M(x ) = M(γx ) + M(Cx ) . (1.2)

Currents associated to graphs of BV-functions. Next we associate to any T ∈
cart(B1 × Y) a current GT ∈ D1(B1 × Y) carried by the graph of the function
uT ∈ BV (B1,Y) corresponding to T , and acting in a linear way on forms ω in
D1(B1 × Y) as follows. We first split ω = ω(0) + ω(1) according to the number
of vertical differentials, so that

ω(0) = φ(x, y) dx and ω(1) =
N∑

j=1

φ j (x, y) dy j

for some φ, φ j ∈ C∞
0 (B1 × Y). We then decompose GT into its absolutely

continuous, Cantor, and Jump parts

GT := T a + T C + T J

and define T C (ω(0)) = T J (ω(0)) = 0 and

T a(ω(0)) :=
∫

B1
φ(x, uT (x)) dx

T a(ω(1)) :=
N∑

j=1

∫
B1

φ j (x, uT (x))∇u j
T (x) dx

T C (ω(1)) :=
N∑

j=1

〈
DC u j

T , φ j (·, uT (·))
〉

T J (ω(1)) :=
N∑

j=1

∫
JuT

(∫
γx

φ j (x, y) dy j
)

· ν(x) dH0(x) .

Here, γx is the indecomposable 1-dimensional integral chain defined by means of
the 1-dimensional restriction of T over the point x ∈ JuT , see (1.2).
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Notice that the definition of GT obviously depends on γx and hence, in con-
clusion, on the current T ∈ cart(B1 ×Y). Moreover, we readily infer that the mass
of GT is given by

M(GT ) = M(T a) + M(T C ) + M(T J ) ,

where

M(T a) =
∫

B1

√
1 + |∇uT (x)|2 dx ,

M(T C ) = |DC uT |(B1) ,

M(T J ) =
∫

JuT

H1(γx ) dH0(x) .

A density result. We recall from [14] that if u : B1 → Y is smooth, or at least
e.g. u ∈ W 1,1(B1,Y), the current Gu integration of 1-forms in D1(B1 ×Y) over
the rectifiable graph of u is defined in a weak sense by Gu := (I d �� u)#[[ B1 ]],
i.e., by letting Gu(ω) = (I d �� u)#(ω) for every ω ∈ D1(B1 × Y), where (I d ��
u)(x) := (x, u(x)). Moreover, the mass of Gu agrees with the area A(u) of the
graph of u

M(Gu) = A(u) :=
∫

B1

√
1 + |Du(x)|2 dx .

By a straightforward adaptation of the proof of Theorem 1.8 below, we readily
obtain the following strong density result for the mass of GT .

Proposition 1.2. For every T ∈ cart(B1 × Y) there exists a sequence of smooth
maps {uk} ⊂ C1(B1,Y) such that uk ⇀ uT weakly in the BV -sense, Guk ⇀ GT

weakly in D1(B1 × Y) and M(Guk ) → M(GT ) as k → ∞.

Vertical Homology. Let now Z1,1(B1 × Y) denote the class of vertically closed
forms

Z1,1(B1 × Y) := {ω ∈ D1(B1 × Y) | dyω
(1) = 0} ,

where d = dx + dy denotes the splitting of the exterior differential d into a hori-
zontal and a vertical differential. We say that Tk ⇀ T weakly in Z1,1(B1 × Y) if
Tk(ω) → T (ω) for every ω ∈ Z1,1(B1 × Y).

Homological vertical part. By Proposition 1.2, since by Stokes’ theorem ∂Guk B1×
Y = 0, whereas Guk ⇀ GT , we obtain that

∂GT B1 × Y = 0 .

Remark 1.3. In higher dimension n ≥ 2 in general GT has a non-zero boundary,
i.e., ∂GT Bn × Y �= 0, see Remark 2.2.
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Setting then
ST := T − GT ,

by (1.1) we infer that ST (φ(x, y) dx) = 0 and ST (dφ) = 0 for every φ ∈
C∞

0 (B1 × Y). Therefore, by homological reasons, since

inf{M(C) | C ∈ Z1(Y) , C is non trivial in Y} > 0 ,

similarly to [14, Vol. II, Section 5.3.1] we infer that

ST =
I∑

i=1

δxi × Ci on Z1,1(B1 × Y) ,

where {xi : i = 1, . . . , I } is a finite disjoint set of points in B1, possibly intersect-
ing the Jump set JuT , and Ci is a non-trivial homological integral 1-cycle in Y .
Notice that the integral 1-homology group H1(Y) is finitely generated.

Remark 1.4. Setting

ST,sing := T − GT −
I∑

i=1

δxi × Ci ,

it turns out that ST,sing is nonzero only possibly on forms ω with non-zero ver-
tical component, ω(1) �= 0, and such that dyω

(1) �= 0. Therefore, ST,sing is a
homologically trivial integer multiplicity rectifiable current in R1(B1 × Y).

Consequently, setting for T ∈ cart(B1 × Y)

T H :=
I∑

i=1

δxi × Ci , (1.3)

T decomposes into the absolutely continuous, Cantor, Jump, Homological, and
Singular parts,

T = T a + T C + T J + T H + ST,sing .

Gap phenomenon. However, a gap phenomenon occurs in cart(B1 × Y). More
precisely, if we set

M̃(T ) := inf

{
lim inf
k→∞ M(Guk )|{uk}⊂C1(B1,Y), Guk ⇀T weakly in D1(B1×Y)

}
,

we see that there exist Cartesian currents T ∈ cart(B1 × Y) for which

M(T ) < M̃(T ) .

For example, as in [14, Vol. I, Section 4.2.5], if T = Gu+δ0×C , where u ≡ P ∈ Y
is a constant map and C ∈ Z1(Y) is a 1-cycle in Y , it readily follows that for every
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smooth sequence {uk} ⊂ C1(B1,Y) such that Guk ⇀ T weakly in D1(B1 × Y)

we have that

lim inf
k→∞ M(Guk ) ≥ M(T ) + 2d , d := distY(P, spt C) ,

where distY denotes the geodesic distance in Y .

Remark 1.5. This gap phenomenon is due to the structure of the area integrand
u �→ √

1 + |Du|2, and it is typical of integrands with linear growth of the gradient,
e.g., the total variation integrand u �→ |Du|, since the images of smooth approx-
imating sequences may have to “connect” the point P to the cycle C , this way
paying a cost in term of the distance d. This does not happen e.g. for the Dirichlet
integrand u �→ 1

2 |Du|2 in dimension 2, compare [15]. In this case, in fact, the con-
nection from one point P to any 2-cycle C ∈ Z2(Y) can be obtained by means of
“cylinders” of small 2-dimensional mapping area and, therefore, of small Dirichlet
integral, on account of Morrey’s ε-conformality theorem.

Homological theory. In order to study the currents which arise as weak limits
of graphs of smooth maps uk : B1 → Y with equibounded total variations,
supk ‖Duk‖L1 < ∞, the previous facts lead us to consider vertical homology equiv-
alence classes of currents in cart(B1 × Y). More precisely, we give the following

Definition 1.6. We denote by cart1,1(B1 × Y) the set of equivalence classes of
currents in cart(B1 × Y), where

T ∼ T̃ ⇐⇒ T (ω) = T̃ (ω) ∀ ω ∈ Z1,1(B1 × Y) .

If T ∼ T̃ , then the underlying BV -functions coincide, i.e., uT = uT̃ . Therefore,
we have T a = T̃ a and T C = T̃ C , whereas in general T J �= T̃ J . However, we
have that

T J + T H = T̃ J + T̃ H on Z1,1(B1 × Y) .

Jump-concentration points. For future use, we let

Jc(T ) := JuT ∪ {xi : i = 1, . . . , I } (1.4)

denote the set of points of jump and concentration , where the xi ’s are given by
(1.3). We infer that Jc(T ) is an at most countable set which does not depend on
the representative T , i.e., Jc(T ) = Jc(T̃ ) if T ∼ T̃ . By extending the notion
of 1-dimensional restriction π̂#(T {x} × Y) to equivalence classes, we infer that
π̂#(T {x} × Y) = 0 if x /∈ Jc(T ). As to jump-concentration points, letting

Z1(Y) := {η ∈ D1(Y) | dyη = 0} ,

if x ∈ JuT , with x �= xi , we infer that

π̂#(T {x} × Y) = γx on Z1(Y) ,
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where γx is the indecomposable 1-dimensional integral chain defined by (1.2), and
if x = xi , see (1.4),

π̂#(T {x} × Y) = γxi + Ci on Z1(Y) ,

where Ci ∈ Z1(Y) is the non-trivial 1-cycle defined by (1.3), and γxi = 0 if
xi /∈ JuT .

Vertical minimal connection. For every Cartesian current T ∈ cart1,1(B1 × Y)

and every point x ∈ Jc(T ) we will denote by

T (x) :={γ ∈Lip([0,1],Y) | γ (0)=u−
T (x), γ (1) = u+

T (x),

γ#[[(0,1)]](η)= π̂#(T {x}×Y)(η) ∀ η∈Z1(Y)} (1.5)

the family of all smooth curves γ in Y , with end points u±
T (x), such that their

image current γ#[[ (0, 1) ]] agrees with the 1-dimensional restriction π̂#(T {x} ×
Y) on closed 1-forms in Z1(Y). Moreover, we denote by

LT (x) := inf{L(γ ) | γ ∈ T (x)} , x ∈ Jc(T ) , (1.6)

the minimal length of curves γ connecting the “vertical part” of T over x to the
graph of uT . For future use, we remark that the infimum in (1.6) is attained, i.e.,

∀ x ∈ Jc(T ) , ∃ γ ∈ T (x) : L(γ ) = LT (x) . (1.7)

Relaxed area functional. We finally introduce the functional

A(T, B) :=
∫

B

√
1 + |∇uT (x)|2 dx + |DC uT |(B) +

∫
Jc(T )∩B

LT (x) dH0(x)

for every Borel set B ⊂ B1, and we let

A(T ) := A(T, B1) .

Notice that for every T ∈ cart1,1(B1 × Y) we have

min{M(T̃ ) : T̃ ∼ T } ≤ A(T ) . (1.8)

Main results. We first prove the following lower semicontinuity property.

Theorem 1.7. Let T ∈ cart1,1(B1 × Y). For every sequence of smooth maps
{uk} ⊂ C1(B1,Y) such that Guk ⇀ T weakly in Z1,1(B1 × Y), we have

lim inf
k→∞ M(Guk ) ≥ A(T ) .

Then we prove the following density result.
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Theorem 1.8. Let T ∈ cart1,1(B1 × Y). There exists a sequence of smooth maps
{uk} ⊂ C1(B1,Y) such that Guk ⇀ T weakly in Z1,1(B1 ×Y) and M(Guk ) →
A(T ) as k → ∞.

As a consequence, if we denote, in the same spirit as Lebesgue’s relaxed area,

Ã(T ) := inf{lim inf
k→∞ A(uk)|{uk}⊂C1(B1,Y) , Guk ⇀T weakly in Z1,1(B1 ×Y)} ,

by Theorems 1.7 and 1.8 we readily conclude that

A(T ) = Ã(T ) ∀ T ∈ cart1,1(B1 × Y) .

Properties. From Theorems 1.7 and 1.8, (1.8) and the closure of the class cart(B1×
Y) we infer:

(i) the functional T �→ A(T ) is lower semicontinuous in cart1,1(B1 × Y) with
respect to the weak convergence in Z1,1(B1 × Y);

(ii) the class cart1,1(B1 × Y) is closed and compact under weak convergence in
Z1,1(B1 × Y) with equibounded A-energies.

We finally notice that similar properties hold if one considers the total variation
integrand u �→ |Du| instead of the area integrand u �→ √

1 + |Du|2. In particular,
setting

E1,1(T ) :=
∫

B1
|∇uT (x)| dx + |DC uT |(B1) +

∫
Jc(T )

LT (x) dH0(x) ,

for every T ∈ cart1,1(B1 × Y) we have

E1,1(T ) = inf

{
lim inf
k→∞

∫
B1

|Duk | dx | {uk} ⊂ C1(B1,Y) ,

Guk ⇀ T weakly in Z1,1(B1 × Y)

}
.

Remark 1.9. For future use, we denote

Yε := {y ∈ R
N | dist(y,Y) ≤ ε}

the ε-neighborhood of Y and we observe that, since Y is smooth, there exists
ε0 > 0 such that for 0 < ε ≤ ε0 the nearest point projection �ε of Yε onto Y is
a well defined Lipschitz map with Lipschitz constant Lε → 1+ as ε → 0+. Note
that for 0 < ε ≤ ε0 the set Yε is equivalent to Y in the sense of the algebraic
topology. In particular, we have

π1(Yε) = π1(Y) .
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Proof of Theorem 1.7. Let {xi }i>I ⊂ B1 be the at most countable set of discon-
tinuity points in JuT \ {xi : i = 1, . . . , I }, see (1.4). By the properties of Y we
have

LT (xi ) ≤ C · |u+
T (xi ) − u−

T (xi )| ∀ i > I ,

where C = C(Y) > 0 is an absolute constant, see (1.6). Therefore, since

|D J uT |(B1) =
∞∑

i=1

|u+
T (xi ) − u−

T (xi )| < ∞ ,

for every ε > 0 we find l(ε) > I such that

∞∑
i=l(ε)+1

LT (xi ) < ε . (1.9)

After rearranging in an increasing way the set {xi : i ≤ l(ε)}, and setting x0 = −1,
xl(ε)+1 = 1, we let

2δ = 2δ(ε) := min{|xi − xi+1| : i = 0, . . . , l(ε)} > 0 .

For i ∈ {1, . . . , l(ε)}, due to the weak convergence uk ⇀ uT in the BV -sense,
possibly passing to a subsequence, we find the existence of sequences of points
ai

k ∈]xi − δ/k, xi [ and bi
k ∈]xi , xi + δ/k[ such that

distY
(
uk(a

i
k), u−

T (xi )
)

<
1

k
and distY

(
uk(b

i
k), u+

T (xi )
)

<
1

k
(1.10)

for every k, where distY denotes the geodesic distance in Y .
Let γ i

k : [0, 1] → Y be the Lipschitz reparametrization with constant velocity
of the smooth curve uk|[ai

k ,b
i
k ]. From the weak convergence Guk ⇀ T we infer that

γ i
k#[[ (0, 1) ]](η) → π̂#(T {x} × Y)(η) ∀ η ∈ Z1(Y) (1.11)

as k → ∞, where π̂#(T {x} × Y) is the previously defined restriction of T
over x . Moreover, by connecting the end points uk(ai

k) and uk(bi
k) with u−

T (xi )

and u+
T (xi ), respectively, due to (1.10) we find a sequence of Lipschitz arcs γ̃ i

k :
[0, 1] → Y , with end points γ̃ i

k (0) = u−
T (xi ) and γ̃ i

k (1) = u+
T (xi ), such that(

γ̃ i
k#[[ (0, 1) ]] − γ i

k#[[ (0, 1) ]]
)
(η) → 0 for every η ∈ Z1(Y) as k → ∞ and

L(γ̃ i
k ) ≤ L(γ i

k ) + 2

k
∀ k .

By the construction we also infer that {γ̃ i
k }k is a sequence of equibounded and

equicontinuous maps. Therefore, by Ascoli’s theorem, possibly passing to a subse-
quence, we find that γ̃ i

k converges uniformly to a Lipschitz arc γ̃ i : [0, 1] → Y ,
with end points u∓

T (xi ), satisfying by (1.11)

γ̃ i
# [[ (0, 1) ]](η) = π̂#(T {x} × Y)(η) ∀ η ∈ Z1(Y) .
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We then obtain that γ̃ i ∈ T (xi ), according to the definition (1.5). Moreover,
by the lower semicontinuity of the length functional with respect to the uniform
convergence, we have

L(γ̃ i ) ≤ lim inf
k→∞ L(γ̃ i

k ) .

By (1.6) and by the above estimates we conclude that

LT (xi ) ≤ lim inf
k→∞ L(γ i

k ) ∀ i = 1, . . . , l(ε) . (1.12)

Now, since by the weak BV -convergence of uk ⇀ uT we have∫
B1

√
1 + |∇uT (x)|2 dx + |DC uT |(B1) ≤ lim inf

k→∞ A(uk) ,

by the previous argument, taking into account (1.9) and (1.12), we readily infer that

A(T ) − ε ≤ lim inf
k→∞ A(uk)

and hence the assertion, by letting ε ↘ 0.

Proof of Theorem 1.8. Let {xi }i>I , l(ε) and δ = δ(ε) be defined as in the
proof of Theorem 1.7, so that (1.9) holds true. Let γ i ∈ T (xi ) be such that
L(γ i ) ≤ LT (xi )+ε ·2−i , see (1.5) and (1.6). For fixed δ ∈ (0, δ(ε)), and for every
i = 1, . . . , l(ε), we first define uε

δ : [xi − δ, xi + δ] → Y by reparametrising with
the same orientation the arc γi , i.e.,

uε
δ(x) := γ i

(
1

2
+ 1

2δ
(x − xi )

)
.

Setting Ii :=]xi +δ, xi+1−δ[ if i = 1, . . . , l(ε)−1, and I1 :=]−1, x1−δ[ , Il(ε) :=
]xl(ε) + δ, 1[, we then extend uε

δ to the whole of B1 by letting uε
δ(x) := uT (�i (x))

if x ∈ Ii for some i = 0, . . . , l(ε), where �i is the bijective and increasing
affine map between the intervals Ii and ]xi , xi+1[. We then apply a mollification
procedure to the function uε

δ , defining this way a smooth map vε
δ : B1 → RN such

that

‖vε
δ − uε

δ‖L1(B1) ≤ δ and
∫

B1
|Dvε

δ | dx ≤ |Duε
δ |(B1) + δ .

Since uT is continuous outside the Jump set JuT and (1.9) holds true, for every
σ > 0 we find η = η(σ, δ, ε) > 0 such that, in the a.e. sense,

∀ x, y ∈ B1 , |x − y| < η =⇒ |uε
δ(x) − uε

δ(y)| < σ + ε .

As a consequence, we may and do define vε
δ in such a way that in particular

dist(vε
δ (x),Y) < ε ∀ x ∈ B1 .

Setting now wε
δ := �ε ◦ vε

δ : B1 → Y , compare Remark 1.9, taking first δ small
with respect to ε, and letting then ε → 0, by a diagonal procedure we find a smooth
approximating sequence.
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2. Cartesian currents, BV-energy and weak limits

In this section we deal with the weak limits of graphs of smooth maps uk : Bn → Y
with equibounded W 1,1-energies. We first state a few preliminary results.

Homological facts. Since H1(Y) has no torsion, there are generators [γ1], . . . , [γs],
i.e. integral 1-cycles in Z1(Y), such that

H1(Y) =
{

s∑
s=1

ns [γs] | ns ∈ Z

}
,

see e.g. [14], Vol. I, Section 5.4.1. By de Rham’s theorem the first real homology
group is in duality with the first cohomology group H1

d R(Y), the duality being
given by the natural pairing

〈[γ ], [ω]〉 := γ (ω) =
∫

γ

ω , [γ ] ∈ H1(Y; R) , [ω] ∈ H1
d R(Y) .

We will then denote by [ω1], . . . , [ωs] a dual basis in H1
d R(Y) so that γs(ω

r ) =
δsr , where δsr denotes the Kronecker symbols.

Dn,1-currents. For p = 1, . . . , n, every differential p-form ω ∈ D p(Bn × Y)

splits as a sum ω =
∑p

j=0
ω( j), where p := min(p, M), M = dim(Y), and

the ω( j)’s are the p-forms that contain exactly j differentials in the vertical Y
variables. We denote by D p,1(Bn × Y) the subspace of D p(Bn × Y) of p-
forms of the type ω = ω(0) + ω(1), and by Dp,1(Bn × Y) the dual space of
D p,1(Bn ×Y). Every (p, 1)-current T ∈ Dp,1(Bn ×Y) splits as T = T(0) + T(1),
where T( j)(ω) := T (ω( j)). For example, if u ∈ W 1,1(Bn,Y), then Gu is an
(n, 1)-current in Dn,1(Bn × Y) defined in an approximate sense by

Gu := (I d �� u)#[[ Bn ]] , (2.1)

where (I d �� u)(x) := (x, u(x)), compare [14], see also [4].

Weak Dn,1-convergence. If {Tk} ⊂ Dn,1(Bn × Y), we say that {Tk} converges
weakly in Dn,1(Bn ×Y), Tk ⇀ T , if Tk(ω) → T (ω) for every ω ∈ Dn,1(Bn ×Y).
Trivially, the class Dn,1(Bn × Y) is closed under weak convergence.

E1,1-norm. For ω ∈ Dn,1(Bn × Y) and T ∈ Dn,1(Bn × Y) we set

‖ω‖E1,1 := max

{
sup
x,y

|ω(0)(x, y)|
1 + |y| ,

∫
Bn

sup
y

|ω(1)(x, y)| dx

}
,

‖T ‖E1,1 := sup

{
T (ω) | ω ∈ Dn,1(Bn × Y) , ‖ω‖E1,1 ≤ 1

}
.
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It is not difficult to show that ‖T ‖E1,1 is a norm on {T ∈ Dn,1(Bn ×Y) : ‖T ‖E1,1 <

∞}. Moreover, ‖ · ‖E1,1 is weakly lower semicontinuous in Dn,1, so that {T ∈
Dn,1(Bn × Y) : ‖T ‖E1,1 < ∞} is closed under weak Dn,1-convergence with
equibounded E1,1-norms. Finally, if supk ‖Tk‖E1,1 < ∞ there is a subsequence
that weakly converges to some T ∈ Dn,1(Bn × Y) with ‖T ‖E1,1 < ∞.

Boundaries. The exterior differential d splits into a horizontal and a vertical dif-
ferential d = dx + dy . Of course ∂x T (ω) := T (dxω) defines a boundary operator
∂x : Dn,1(Bn ×Y) → Dn−1,1(Bn ×Y). Now, for any ω ∈ Dn−1,1(Bn ×Y), dyω

belongs to Dn,1(Bn × Y) if and only if dyω
(1) = 0. Then ∂y T makes sense only

as an element of the dual space of Zn−1,1(Bn × Y), where

Z p,1(Bn × Y) := {ω ∈ D p,1(Bn × Y) | dyω
(1) = 0} .

Graphs of BV-maps. We introduce a class of Dn,1-currents associated to the
graphs of BV -functions. To this aim, we observe that any form ω = ω(1) ∈
Dn,1(Bn × Y) can be written as

ω(1) =
n∑

i=1

N∑
j=1

(−1)n−iφ
j
i (x, y) d̂xi ∧ dy j (2.2)

for some φ
j
i ∈ C∞

0 (Bn × Y), and we will set φ j := (φ
j
1 , . . . , φ

j
n ).

Definition 2.1. We say that a current G ∈ Dn,1(Bn ×Y) is in BV -graph(Bn ×Y)

if it decomposes into its absolutely continuous, Cantor, and Jump parts

G := Ga + GC + G J ,

where GC
(0) = G J

(0) = 0, and its action on forms in Dn,1(Bn ×Y) is given for any
φ ∈ C∞

c (Bn × Y) by

G(φ(x, y) dx) = Ga(φ(x, y) dx) :=
∫

Bn
φ(x, u(x)) dx

for some function u = u(G) ∈ BV (Bn,Y) and, on forms ω = ω(1) satisfying
(2.2), by

Ga(ω(1)) :=
N∑

j=1

∫
Bn

〈∇u j , φ j (x, u(x))〉 dx

GC (ω(1)) :=
N∑

j=1

∫
Bn

φ j (x, u(x)) d DC u j

G J (ω(1)) :=
N∑

j=1

n∑
i=1

∫
Ju

(∫
γx

φ
j
i (x, y) dy j

)
νi dHn−1(x) ,

where γx is a 1-dimensional integral chain in Y satisfying ∂γx = δu+(x) − δu−(x)

and ν = (ν1, . . . , νn) is the unit normal to Ju at x, for Hn−1-a.e. x ∈ Ju.
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Remark 2.2. If n ≥ 2 in general the current G has a non-zero boundary in Bn ×
Y , even if u ∈ W 1,1(Bn,Y), i.e., if G = Ga . Take for example n = 2, Y = S1 ⊂
R2, and u(x) = x/|x |, so that G = Gu := (Id �� u)#[[ B2 ]] and hence

∂G B2 × S1 = −δ0 × [[ S1 ]] ,

where δ0 is the unit Dirac mass at the origin. However, as we shall see in Re-
mark 6.10 below, the boundary ∂G is null on every (n − 1)-form ω̃ in Bn × Y
which has no “vertical” differentials.

Weak limits of smooth graphs. Let {uk} ⊂ C1(Bn,Y) be a sequence of smooth
maps with equibounded W 1,1-energies, supk ‖Duk‖L1 < ∞. The currents Guk

carried by the graphs of the uk’s are well defined currents in Dn,1(Bn × Y) with
equibounded E1,1-norms. Therefore, possibly passing to a subsequence, we infer
that Guk ⇀ T weakly in Dn,1(Bn × Y) to some current T ∈ Dn,1(Bn × Y), and
uk ⇀ uT weakly in the BV -sense to some function uT ∈ BV (Bn,Y). Therefore,
we clearly have that

T (φ(x, y) dx) =
∫

Bn
φ(x, uT (x)) dx ∀ φ ∈ C∞

c (Bn × Y) . (2.3)

Moreover, by lower semicontinuity we have ‖T ‖E1,1 < ∞ whereas, since the
Guk ’s have no boundary in Bn × Y , by the weak convergence we also infer

∂T = 0 on Zn−1,1(Bn × Y) . (2.4)

Currents associated to graphs of BV-functions. Arguing as in Section 1, we
associate to the weak limit current T a current GT ∈ BV -graph(Bn × Y), see
Definition 2.1, where the function u = u(GT ) ∈ BV (Bn,Y) is given by uT
and the γx ’s in the definition of the jump part G J

T are the indecomposable 1-
dimensional integral chains defined as in the previous section, but for Hn−1-a.e.
x ∈ JuT , since ‖T ‖E1,1 < ∞, compare (1.2) and Definition 2.8 below. In general
∂GT Bn × Y �= 0. However, setting

ST := T − GT ,

we clearly have ST (φ(x, y) dx) = 0 for every φ ∈ C∞
c (Bn × Y). Moreover, we

also have:

Proposition 2.3. ST (ω) = 0 for every form ω = ω(1) such that ω = dyω̃ for
some ω̃ ∈ Dn−1,0(Bn × Y).

Proof. Write ω̃ := ωϕ ∧ η for some η ∈ C∞
0 (Y) and ϕ = (ϕ1, . . . , ϕn) ∈

C∞
0 (Bn, Rn), where

ωϕ :=
n∑

i=1

(−1)i−1ϕi (x) d̂xi . (2.5)
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Since
d(ωϕ ∧ η) = divϕ(x)η(y) dx + (−1)n−1ωϕ ∧ dyη

and T (d(ωϕ ∧ η)) = ∂T (ωϕ ∧ η) = 0, we have

(−1)nT (divϕ(x)η(y) dx) = T (ωϕ ∧ dyη) ,

so that

ST (ωϕ ∧ dyη) = (−1)nT (divϕ(x)η(y) dx) − GT (ωϕ ∧ dyη) .

Moreover, since T(0) = GT (0), by (2.3) we have

T (divϕ(x)η(y) dx) =
∫

Bn
divϕ(x)η(uT (x)) dx = −〈D(η ◦ uT ), ϕ〉

whereas, taking φ
j
i = ϕi Dy j η in (2.2), by the definition of GT , since ∂γx =

δu+
T (x) − δu−

T (x) we infer

(−1)n−1GT (ωϕ ∧ dyη) =
N∑

j=1

∫
Bn

∂η

∂y j
(uT (x))〈∇u j

T (x), ϕ(x)〉 dx

+
N∑

j=1

∫
Bn

∂η

∂y j
(uT (x)) ϕ(x) d DC u j

T

+
∫

JuT

(
η(u+

T (x)) − η(u−
T (x)

)〈ϕ(x), ν(x)〉 dHn−1 .

Finally, by the chain rule for the derivative D(η ◦ uT ) we obtain

(−1)n−1GT (ωϕ ∧ dyη) = 〈D(η ◦ uT ), ϕ〉
and hence that ST (ωϕ ∧ dyη) = 0.

In conclusion, similarly to [14, Vol. II, Section 5.4.3], we infer that the weak
limit current T is given by

T = GT + ST , ST =
s∑

s=1
Ls(T ) × γs on Zn,1(Bn × Y) , (2.6)

where Ls(T ) ∈ Dn−1(Bn) is defined by

Ls(T ) = (−1)n−1π#(ST π̂#ωs) , s = 1, . . . , s , (2.7)

so that
Ls(T )(φ) = ST (π#φ ∧ π̂#ωs) ∀ φ ∈ Dn−1(Bn) .
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Notice that by (2.4) we have

∂ Ls(T ) Bn = (−1)n−1π#((∂GT ) π̂#ωs) ∀ s = 1, . . . , s .

Finally, setting

ST,sing := T − GT −
s∑

s=1
Ls(T ) × γs , (2.8)

see Remark 1.4, it turns out that ST,sing is nonzero only possibly on forms ω with
non-zero vertical component, ω(1) �= 0, and such that dyω

(1) �= 0.

Parametric polyconvex lower semicontinuous extension of the total variation.
Following [14], Vol. II, Section 1.2, we recall that the parametric polyconvex lower
semicontinuous extension ‖ · ‖T V of the total variation integrand of mappings from
Bn to RN has the form

‖ξ‖T V := |ξ(1)| ∀ξ ∈ �nR
n+N such that ξ00 ≥ 0, (2.9)

where ξ00 denotes the coefficient of the first component of any n-vector ξ ∈
�nRn+N and |ξ(1)| is the euclidean norm of the component ξ(1) of ξ in �n−1R

n⊗
�1R

N . We have

Proposition 2.4. The parametric polyconvex lower semicontinuous extension

F(x, u, ξ) : Bn × RN × �nRn+N → R
+

of the total variation integrand of map-
pings from Bn into any smooth manifold Y ⊂ RN is given by

F(x, u, ξ) :=
{ ‖ξ‖T V if u ∈ Y, ξ ∈ �n(R

n × TuY)

+∞ otherwise ,
(2.10)

where ‖ξ‖T V is given by (2.9) and TuY is the tangent space to Y at u.

Parametric total variation. If T ∈ Dn,1(Bn × Y) is such that ‖T ‖E1,1 < ∞, we
denote by

T = ‖T ‖E1,1

−→
T

the Radon-Nikodym decomposition of T with respect to the E1,1-norm, T being
identified with the R1+Nn-valued linear functional

T := (
T 00, (T i j )RNn

)
, i = 1, . . . n , j = 1, . . . N ,

where

T 00(φ) := T (φ dx) , T i j (φ) := T (φ d̂xi ∧ dy j ) , φ ∈ C∞
0 (Bn × Y) .

Definition 2.5. The parametric variational integral associated to the total variation
integral is defined for every Borel set B ⊂ Bn by

F1,1(T, B × Y) :=
∫

B×Y
F

(
π(z), π̂(z),

−→
T (z)

)
d‖T ‖E1,1(z)

where F(x, u, ξ) is given by (2.10), and we let F1,1(T ) := F1,1(T, Bn × Y).
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Gap phenomenon. If T ∈ Dn,1(Bn × Y) is the weak limit of a sequence {Guk }
of graphs of smooth maps {uk} ⊂ C1(Bn,Y) with equibounded W 1,1-energies,
since F1,1(Guk ) = ‖Duk‖L1 , by the lower semicontinuity of F1,1 with respect
to the weak convergence in Dn,1 we infer that F1,1(T ) < ∞. Moreover, if T
decomposes as in (2.6) on the whole of Dn,1(Bn ×Y), i.e., the singular part ST,sing
defined in (2.8) vanishes, and if the Ls(T )’s are integer multiplicity rectifiable
currents, an explicit formula can be obtained. However, similarly to the case of
dimension n = 1, a gap phenomenon occurs. More precisely, in general for every
smooth sequence {uk} ⊂ C1(Bn,Y) such that Guk ⇀ T weakly in Dn,1(Bn ×Y)

we have that
lim inf
k→∞ F1,1(Guk ) ≥ F1,1(T ) + C

for some absolute constant C > 0, see Remark 1.5.

Vertical homology classes. As in Definition 1.6, we are therefore led to consider
vertical homology equivalence classes of currents satisfying the same structure
properties as weak limits of graphs of smooth maps uk : Bn → Y with equi-
bounded total variation, supk ‖Duk‖L1 < ∞. More precisely, we say that

T ∼ T̃ ⇐⇒ T (ω) = T̃ (ω) ∀ ω ∈ Zn,1(Bn × Y) . (2.11)

Moreover, we will say that Tk ⇀ T weakly in Zn,1(Bn × Y) if Tk(ω) → T (ω)

for every ω ∈ Zn,1(Bn × Y).

Definition 2.6. We denote by E1,1 -graph(Bn × Y) the set of equivalence classes,
in the sense of (2.11), of currents T in Dn,1(Bn × Y) which have no interior
boundary,

∂T = 0 on Zn−1,1(Bn × Y) ,

finite E1,1-norm, i.e.

‖T ‖E1,1 := sup

{
T (ω) | ω ∈ Zn,1(Bn × Y) , ‖ω‖E1,1 ≤ 1

}
< ∞ ,

and decompose as

T = GT + ST , ST =
s∑

s=1
Ls(T ) × γs on Zn,1(Bn × Y) ,

where GT ∈ BV -graph(Bn × Y), see Definition 2.1, and Ls(T ) is an integer
multiplicity rectifiable current in Rn−1(Bn) for every s.

Remark 2.7. If T̃ ∼ T , in general GT̃ �= GT . However, the corresponding BV -
functions coincide, i.e., u(GT ) = u(GT̃ ), see Definition 2.1. This yields that we
may refer to the underlying functions uT ∈ BV (Bn,Y) associated to currents T
in E1,1 -graph(Bn × Y).
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Jump-concentration set. Moreover, if L(T ) denotes the (n − 1)-rectifiable set
given by the union of the sets of positive multiplicity of the Ls(T )’s, we infer that
the union

Jc(T ) := JuT ∪ L(T ) (2.12)

does not depend on the choice of the representative in T . As in dimension one,
the countably Hn−1-rectifiable set Jc(T ) is said to be the set of points of jump-
concentration of T .

Restriction over points of jump-concentration. Let T ∈ E1,1 -graph(Bn × Y)

and let νT : Jc(T ) → Sn−1 denote an extension to Jc(T ) of the unit normal
νuT to the Jump set JuT . For any k = 1, . . . , n − 1, let P be an oriented k-

dimensional subspace in Rn and Pλ := P +
∑n−k

i=1
λiνi the family of oriented

k-planes parallel to P , where λ := (λ1, . . . , λn−k) ∈ Rn−k , span(ν1, . . . , νn−k)

being the orthogonal space to P . Since T has finite E1,1-norm, similarly to the case
of normal currents, for Ln−k-a.e. λ such that Pλ ∩ Bn �= ∅, the slice T π−1(Pλ)

of T over π−1(Pλ) is a well defined k-dimensional current in E1,1 -graph((Bn ∩
Pλ) × Y) with finite E1,1-norm. Moreover, for any such λ we have

Jc(T π−1(Pλ)) = Jc(T ) ∩ Pλ in the Hk−1-a.e. sense ,

whereas the BV -function associated to T π−1(Pλ) is equal to the restriction
uT |Pλ of uT to Pλ. Therefore, in the particular case k = 1, as in Section 1 the
1-dimensional restriction

π̂#
(
(T π−1(Pλ)) {x} × Y

) ∈ D1(Y) (2.13)

of the 1-dimensional current T π−1(Pλ) over any point x ∈ Jc(T ) ∩ Pλ such
that νT (x) does not belong to P is well defined. In this case, from the slicing
properties of BV -functions, if x ∈ (Jc(T )\ JuT )∩ Pλ we have uT |Pλ(x) = uT (x).
Moreover, if x ∈ JuT ∩ Pλ, the one-sided approximate limits of uT are equal to
the one-sided limits of the restriction uT |Pλ , i.e.

u+
T |Pλ

(x) = u+
T (x) and u−

T |Pλ
(x) = u−

T (x) ,

provided that 〈ν, νuT (x)〉 > 0, where ν is an orienting unit vector to P , com-
pare Theorem 3.2. We finally infer that for Hn−1-a.e. point x ∈ Jc(T ) the 1-
dimensional restriction (2.13), up to the orientation, does not depend on the choice
of the oriented 1-space P and on λ ∈ Rn−1, provided that x ∈ Pλ and νT (x)

does not belong to P . As a consequence we may and do give the following:

Definition 2.8. For Hn−1-a.e. point x ∈ Jc(T ), the 1-dimensional restriction
π̂#(T {x} × Y) is well-defined by (2.13) for any oriented 1-space P and λ ∈
Rn−1 such that x ∈ Pλ and 〈ν, νT (x)〉 > 0, where ν is the orienting unit vector
to P.



504 MARIANO GIAQUINTA AND DOMENICO MUCCI

BV-energy. The gap phenomenon and the properties previously described lead us
to define the BV -energy of a current T ∈ E1,1 -graph(Bn × Y) as follows.

Definition 2.9. For Hn−1-a.e. point x ∈ Jc(T ) we define T (x) and LT (x) by
(1.5) and (1.6), respectively, where this time π̂#(T {x} ×Y) is the 1-dimensional
restriction given by Definition 2.8.

Definition 2.10. The BV -energy of a current T ∈ E1,1 -graph(Bn × Y) is defined
for every Borel set B ⊂ Bn by

E1,1(T, B × Y) :=
∫

B
|∇uT (x)| dx +

∣∣∣DC uT

∣∣∣ (B) +
∫

Jc(T )∩B
LT (x) dHn−1(x) .

We also let
E1,1(T ) := E1,1(T, Bn × Y) .

Of course, if T = Gu is the current integration of n-forms in Dn,1(Bn × Y)

over the graph of a smooth W 1,1-function u : Bn → Y , then

E1,1(u) = E1,1(Gu) = ‖Du‖L1 .

Definition 2.11. We denote by cart1,1(Bn × Y) the class of currents T in E1,1-
graph(Bn × Y) such that E1,1(T ) < ∞.

Lower semicontinuity. Using the lower semicontinuity result in dimension n = 1,
see Theorem 1.7, and applying arguments as for instance in [7], in Section 3 we
will prove in any dimension:

Theorem 2.12. Let n ≥ 2 and T ∈ cart1,1(Bn ×Y). For every sequence of smooth
maps {uk} ⊂ C1(Bn,Y) such that Guk ⇀ T weakly in Zn,1(Bn × Y), we have

lim inf
k→∞ E1,1(uk) ≥ E1,1(T ) .

A strong density result. In all the results stated below, we shall always assume that
the first homotopy group π1(Y) is commutative. We shall prove in any dimension
n ≥ 2

Theorem 2.13. Let T ∈ cart1,1(Bn ×Y). There exists a sequence of smooth maps
{uk} ⊂ C1(Bn,Y) such that Guk ⇀ T weakly in Zn,1(Bn ×Y) and E1,1(uk) →
E1,1(T ) as k → ∞.

More precisely, in Section 4 we will prove:

Theorem 2.14. Let T ∈ cart1,1(Bn × Y). We can find a sequence of currents
{Tk} ⊂ cart1,1(Bn × Y) such that

Tk ⇀ T weakly in Zn,1(Bn × Y) , E1,1(Tk) → E1,1(T )

and for all k the corresponding function uk := uTk in BV (Bn,Y) has no Cantor
part, i.e, |DC uk | = 0 for every k. Moreover, uk weakly converges to uT in the
BV -sense and

lim
k→∞ |Duk |(Bn) = |DuT |(Bn) .
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In Section 5 we will then prove

Theorem 2.15. Let T ∈ cart1,1(Bn × Y) be such that the corresponding BV -
function uT ∈ BV (Bn,Y) has no Cantor part, i.e, |DC uT | = 0. There exists
a sequence of smooth maps {uk} ⊂ C1(Bn,Y) such that Guk ⇀ T weakly in
Zn,1(Bn × Y) and the energy E1,1(uk) → E1,1(T ) as k → ∞.

By a diagonal argument we then clearly obtain Theorem 2.13.

Relaxed total variation functional. As a consequence, setting

Ẽ1,1(T ) := inf

{
lim inf
k→∞

∫
Bn

|Duk | dx : {uk} ⊂ C1(Bn,Y) ,

Guk ⇀ T weakly in Zn,1(Bn × Y)

}
,

by Theorems 2.12 and 2.13 we conclude that

E1,1(T ) = Ẽ1,1(T ) ∀ T ∈ cart1,1(Bn × Y) .

Properties. By Theorems 2.12 and 2.13 we readily infer the following lower semi-
continuity result.

Proposition 2.16. Let {Tk} ⊂ cart1,1(Bn ×Y) converge weakly in Zn,1(Bn ×Y),
Tk ⇀ T , to some T ∈ cart1,1(Bn × Y). Then

E1,1(T ) ≤ lim inf
k→∞ E1,1(Tk) .

As a consequence of Theorem 2.13, in the final part of this section we prove that
the class of Cartesian currents cart1,1(Bn × Y) is closed under weak convergence
with equibounded energies.

Theorem 2.17. Let {Tk} ⊂ cart1,1(Bn × Y) converge weakly in Zn,1(Bn × Y),
Tk ⇀ T , to some T ∈ Dn,1(Bn × Y), and supk E1,1(Tk) < ∞. Then T ∈
cart1,1(Bn × Y).

By the relative compactness of E1,1-bounded sets in Dn,1(Bn × Y), we then
readily infer the following compactness property.

Proposition 2.18. Let {Tk} ⊂ cart1,1(Bn × Y) be such that supk E1,1(Tk) < ∞.
Then, possibly passing to a subsequence, Tk ⇀ T weakly in Zn,1(Bn × Y) to
some T ∈ cart1,1(Bn × Y).

Proof of Theorem 2.17. By Theorem 2.13, and by a diagonal procedure, we may
and will assume that Tk = Guk for some smooth sequence {uk} ⊂ C1(Bn,Y). As
a consequence, by the first part of this section we infer that T satisfies (2.4) and
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(2.6). It then remains to show that the Ls(T )’s in (2.6) are integer multiplicity rec-
tifiable current in Rn−1(Bn). In this case, in fact, since ‖T ‖E1,1 < ∞, we obtain
that T ∈ E1,1-graph(Bn × Y), see Definition 2.6, and hence, by lower semicon-
tinuity, Theorem 2.12, and the condition supk E1,1(Guk ) < ∞, we conclude that
E1,1(T ) < ∞, which yields T ∈ cart1,1(Bn ×Y), according to Definition 2.11. To
prove that the Ls(T )’s are integer multiplicity rectifiable currents we make use of
the following slicing argument.

As before, let P be an oriented 1-space in Rn and {Pλ}λ∈Rn−1 the family of
oriented straight lines parallel to P . For Hn−1-a.e. λ the slice T π−1(Pλ) of
T over π−1(Pλ) is well defined on Z1,1((Bn ∩ Pλ) × Y) and Guk π−1(Pλ)

belongs to cart1,1((Bn ∩ Pλ) ×Y) for every k. Moreover, since Guk ⇀ T weakly
in Zn,1, for Hn−1-a.e. λ, passing to a subsequence we have Guk π−1(Pλ) ⇀

T π−1(Pλ) weakly in Z1,1((Bn ∩ Pλ)×Y), with supk M(Guk π−1(Pλ)) < ∞,
so that by the closure-compactness of cart1,1 on 1-dimensional domains, we infer
that T π−1(Pλ) ∈ cart1,1((Bn ∩ Pλ) × Y).

Therefore, the 0-dimensional slices Ls(T ) π−1(Pλ) are rectifiable in R0(Bn∩
Pλ), as T π−1(Pλ) belongs to cart1,1((Bn ∩ Pλ) ×Y) and Ls(T ) π−1(Pλ) =
Ls(T π−1(Pλ)). Since the Ls(T )’s are flat chains, see Lemma 2.19 below, ar-
guing as in [12], by White’s rectifiability criterion [23], see also [3], we infer that
Ls(T ) is an integer multiplicity rectifiable current in Rn−1(Bn) for every s, as
required.

Lemma 2.19. The Ls(T )’s are flat chains in Bn.

Proof. By Theorem 2.13, we may and will assume that T is the weak limit of
Guk for some smooth sequence {uk} ⊂ C1(Bn,Y) such that supk ‖uk‖W 1,1 < ∞.
The proof follows the same lines as the proof of [17, Theorem 2.15]. Since uk ∈
BV (Bn,Y) is smooth, for all k and s we infer that Ls(Guk ) := π#(Guk π̂#ωs)

is a flat chain with equibounded flat norms. Recall that the flat norm F
(
Ls(Guk )

)
of Ls(Guk ) is given by

F
(
Ls(Guk )

)
:= sup{Ls(Guk )(φ) | φ ∈ Dn−1(Bn) , F(φ) ≤ 1} ,

where

F(φ) := max

{
sup

x∈Bn
‖φ(x)‖ , sup

x∈Bn
‖dφ(x)‖

}
.

Next, since uk ⇀ uT weakly in the BV -sense, we deduce that {Ls(Guk )(φ)}k

is a Cauchy sequence for every φ such that F(φ) ≤ 1. If Fn−1(Bn) denotes a
countable dense subset of smooth forms φ in Dn−1(Bn) satisfying F(φ) ≤ 1, by
a diagonal argument we infer that

sup
{(

Ls(Guk ) − Ls(Guh )
)
(φ) | φ ∈ Fn−1(Bn)

}
is small for k, h large. This yields that {Ls(Guk )}k is a Cauchy sequence with
respect to the flat norm, i.e., that

F
(
Ls(Guk )−Ls(Guh )

)
:=sup

{(
Ls(Guk ) − Ls(Guh )

)
(φ) |φ ∈Dn−1(Bn) , F(φ)≤1

}
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is small for k, h large and therefore, due to weak convergence of Guk to T , that
Rs := π#(T π̂#ωs) is a flat chain. Similarly, by using a trivial extension of
Theorem 6.7 below, we infer that Ds := π#(GT π̂#ωs) is a flat chain and hence,
since (−1)n−1

Ls(T ) = Rs − Ds , compare (2.6) and (2.7), we conclude that Ls(T )

is a flat chain, too.

3. Lower semicontinuity

In this section we prove Theorem 2.12, by recovering it from the one dimensional
case. To this aim, we recall the following properties from BV -functions theory,
compare [2, Section 3.11].

One-dimensional restrictions of BV-functions. Let � ⊂ Rn be an open set.
Given ν ∈ Sn−1 we denote by πν the hyperplane in Rn orthogonal to ν and by
�ν the orthogonal projection of � on πν . For any y ∈ �ν we let

�ν
y := {t ∈ R | y + tν ∈ �}

denote the (non-empty) section of � corresponding to y. Accordingly, for any
function u : B ⊂ � → RN and any y ∈ Bν the function uν

y : Bν
y → RN is

defined by
uν

y(t) := u(y + tν) .

Proposition 3.1. Let u ∈ L1(�, RN ). Then u ∈ BV (�, RN ) if and only if there
exist n linearly independent unit vectors νi such that uνi

y ∈ BV (�
νi
y , RN ) for

Ln−1-a.e. y ∈ �νi and∫
�νi

|Duνi
y |(�νi

y ) dLn−1(y) < ∞ ∀ i = 1, . . . , n .

Theorem 3.2. If u ∈ BV (�, RN ) and ν ∈ Sn−1, then

〈Du, ν〉 = Ln−1 �ν ⊗ Duν
y , 〈Dau, ν〉 = Ln−1 �ν ⊗ Dauν

y ,

〈D J u, ν〉 = Ln−1 �ν ⊗ D J uν
y , 〈DC u, ν〉 = Ln−1 �ν ⊗ DC uν

y .

In addition, for Ln−1-a.e. y ∈ �ν the precise representative u∗ has classical
directional derivatives along ν L1-a.e. in �ν

y, the function (u∗)νy is a good repre-
sentative in the equivalence class of uν

y, its Jump set is (Ju)νy and

∂u∗

∂ν
(y + tν) = 〈∇u(y + tν), ν〉 for L1-a.e. t ∈ �ν

y .

Finally, σ(t) := 〈ν, νu(y + tν)〉 �= 0 for Ln−1-a.e. y ∈ �ν and L1-a.e. t ∈ �ν
y,

and lim
s↓t

u∗(y + sν) = u+(y + tν), lim
s↑t

u∗(y + sν) = u−(y + tν) if σ(t) > 0

lim
s↓t

u∗(y + sν) = u−(y + tν), lim
s↑t

u∗(y + sν) = u+(y + tν) if σ(t) < 0.
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One-dimensional restrictions of Cartesian currents. If T ∈ cart1,1(Bn,Y), tak-
ing � = Bn , for any ν ∈ Sn−1 the 1-dimensional slice

T ν
y := T (Bn)νy × Y

defines a Cartesian current T ν
y ∈ cart1,1((Bn)νy × Y) for Ln−1-a.e. y ∈ (Bn)ν .

Also, by Theorem 3.2 and by Definition 2.10, we infer that the BV -energy of T ν
y

is given for Ln−1-a.e. y ∈ (Bn)ν by

E1,1(T ν
y , Aν

y × Y) =
∫

Aν
y

|〈∇uT (y + tν), ν〉| dt + |DC (uT )νy |(Aν
y)

+
∑

t∈(Jc(T )∩A)νy

LT (y + tν)
(3.1)

for any open set A ⊂ Bn .

Proof of Theorem 2.12. We follow [2, Theorem 5.4], [7]. Since {uk} ⊂ C1(Bn,Y)

is such that Guk ⇀ T weakly in Zn,1(Bn × Y), for Ln−1-a.e. y ∈ (Bn)ν we
infer that

(Guk )
ν
y ⇀ T ν

y weakly in Z1,1((Bn)νy × Y) ,

where

(Guk )
ν
y = G(uk)

ν
y
, (uk)

ν
y(t) := uk(y + tν) ∈ C1((Bn)νy,Y) .

Therefore, arguing as in the proof of Theorem 1.7, we readily infer that

E1,1(T ν
y , Aν

y × Y) ≤ lim inf
k→∞ E1,1((uk)

ν
y, Aν

y) (3.2)

for any open set A ⊂ Bn , where

E1,1((uk)
ν
y, Aν

y) = E1,1(G(uk)
ν
y
, Aν

y × Y) =
∫

Aν
y

|〈∇uk(y + tν), ν〉| dt .

We now denote by νT an extension to the countably Hn−1-rectifiable set Jc(T )

of the outward unit normal to the Jump set JuT . By the coarea formula, for any
ν ∈ Sn−1 and any open set A ⊂ Bn , we have∫

Jc(T )∩A
|〈νT (x), ν〉| f (x) dHn−1(x) =

∫
πν

∑
t∈(Jc(T )∩A)νy

f (y + tν) dLn−1(y)

for any Borel function f : Jc(T ) ∩ A → [0, +∞]. Moreover, Theorem 3.2 gives∫
A

|〈∇uT , ν〉| dx =
∫

πν

(∫
Aν

y

|∇(uT )νy(t)| dt

)
Ln−1(y)∣∣∣〈DC uT , ν

〉∣∣∣ (A) =
∫

πν

∣∣∣DC (uT )νy

∣∣∣ (Aν
y) dLn−1(y) .



THE BV-ENERGY OF MAPS INTO A MANIFOLD 509

Therefore, setting for every open set A ⊂ Bn and ν ∈ Sn−1

E1,1(T, A × Y, ν) :=
∫

A
|〈∇uT , ν〉| dx + |〈DC uT , ν〉|(A)

+
∫

Jc(T )∩A
|〈νT (x), ν〉|LT (x) dHn−1(x) ,

by (3.1) we obtain the identity

E1,1(T, A × Y, ν) =
∫

πν

E1,1(T ν
y , Aν

y × Y) dLn−1(y) . (3.3)

Similarly, for every k we obtain

E1,1(uk, A, ν) :=
∫

A
|〈∇uk, ν〉| dx =

∫
πν

E1,1((uk)
ν
y, Aν

y) dLn−1(y) . (3.4)

We also notice that

E1,1(T, A × Y, ν) ≤ E1,1(T, A × Y) and E1,1(uk, A, ν) ≤ E1,1(uk, A) .

Since

lim
k→∞

∫
πν

(∫
Aν

y

|(uk)
ν
y − (uT )νy | dt

)
dLn−1(y) = lim

k→∞

∫
A

|uk − uT | dx = 0 ,

we can find a sequence {k(h)} such that

lim inf
k→∞ E1,1(uk, A, ν) = lim

h→∞ E1,1(uk(h), A, ν)

and (Guk(h)
)νy converges to T ν

y weakly in Z1,1(Aν
y × Y) as h → ∞ for Ln−1-

a.e. y ∈ πν . The lower semicontinuity property in dimension one, see (3.2), implies
then

lim inf
h→∞ E1,1((uk(h))

ν
y, Aν

y) ≥ E1,1(T ν
y , Aν

y × Y)

for Ln−1-a.e. y ∈ πν . Integrating both sides on πν , using Fatou’s lemma and
(3.3), (3.4), we get

lim inf
k→∞ E1,1(uk, A, ν) = lim

h→∞ E1,1(uk(h), A, ν) ≥ E1,1(T, A × Y, ν) .

Let λ := Ln +LT (·)Hn−1 Jc(T ) + |DC uT | and let {νi } ⊂ Sn−1 be a countable
dense sequence. Choosing an Ln-negligible set E ⊂ Bn \ Jc(T ) on which |DC uT |
is concentrated, we can define

ϕi (x) :=


|〈∇uT (x), νi 〉| if x ∈ Bn \ (E ∪ Jc(T ))

|〈νT (x), νi 〉|LT (x) if x ∈ Jc(T )

|〈DC uT , νi 〉|
|DC uT | (x) if x ∈ E
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and obtain from (3.3) that

lim inf
k→∞ E1,1(uk, A) ≥ lim inf

k→∞ E1,1(uk, A, νi ) ≥ E1,1(T, A × Y, νi ) =
∫

A
ϕi dλ

for any i ∈ N and any open set A ⊂ Bn . By the superadditivity of the lim inf
operator, we obtain that

lim inf
k→∞ E1,1(uk, Bn) ≥

∑
i

∫
Ai

ϕi dλ

for any finite family of pairwise disjoint open sets Ai ⊂ Bn . We now recall that by
[2, Lemma 2.35] ∫

Bn
sup
i∈N

ϕi dλ = sup

{∑
i∈I

∫
Ai

ϕi dλ

}
,

where the supremum is taken over all finite sets I ⊂ N and all families {Ai }i∈I of
pairwise disjoint open sets with compact closure in Bn . We then conclude that

lim inf
k→∞ E1,1(uk, Bn) ≥

∫
Bn

sup
i∈N

ϕi dλ

=
∫

Bn
|∇uT (x)|dx + |DC uT |(Bn) +

∫
Jc(T )

LT (x) dHn−1(x)

= E1,1(T, Bn × Y).

4. The density theorem: part I

In this section we prove Theorem 2.14. To this aim we first recall that every T ∈
cart1,1(Bn × Y) decomposes as

T = GT + ST , ST =
s∑

s=1
Ls(T ) × γs on Zn,1(Bn × Y) ,

see Definition 2.11. Let u = uT ∈ BV (Bn,Y) be the BV -function associated to
T , according to Remark 2.7. For every Borel set B ⊂ Bn we have

E1,1(T, B × Y) =
∫

B
|∇u(x)| dx + |DC u|(B) +

∫
Jc(T )∩B

LT (x) dHn−1(x) ,

where Jc(T ), T (x), and LT (x) are given by (2.12), (1.5), and (1.6), respectively,
compare Definition 2.10.

Slicing properties. Similarly to the case of normal currents, for every point x0 ∈
Bn and for a.e. radius r ∈ (0, r0), where 2r0 := dist(x0, ∂ Bn), the slice

〈T, dx0, r〉 = 〈GT , dx0, r〉 + 〈ST , dx0, r〉 ,
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where dx0(x, y) :=|x −x0|, is a well-defined Cartesian current in cart1,1(∂ Br (x0)×
Y). More precisely, let u(r,x0) := u|∂ Br (x0) be the restriction of u to ∂ Br (x0), which
is a function in BV (∂ Br (x0),Y) with jump set satisfying Ju(r,x0)

= Ju ∩ ∂ Br (x0)

in the Hn−1-a.e. sense. The slice 〈GT , dx0, r〉 is an (n − 1)-dimensional current in
BV -graph(∂ Br (x0) × Y) such that its action on forms in Dn−1,1(∂ Br (x0) × Y),
according to a straightforward extension of Definition 2.1, depends on the restric-
tion u(r,x0) and on the 1-dimensional integral chains γx in Y associated to the
current GT ∈ BV -graph(Bn ×Y), so that in particular ∂γx = δu+

(r,x0)
(x) −δu−

(r,x0)
(x)

for Hn−1-a.e. x ∈ Ju(r,x0)
. Also,

〈ST , dx0, r〉 =
s∑

s=1

〈Ls(T ), δx0, r〉 × γs on Zn−1,1(∂ Br (x0) × Y) ,

where δx0(x) := |x − x0|. Finally, letting

Jc(〈T, dx0, r〉) := Ju(r,x0)
∪ L(〈T, dx0, r〉) ,

where L(〈T, dx0, r〉) denotes the (n − 2)-rectifiable set given by the union of the
sets of positive multiplicity of the 〈Ls(T ), δx0, r〉’s, we have, in the Hn−1-a.e.
sense,

Jc(〈T, dx0, r〉) = Jc(T ) ∩ ∂ Br (x0) ,

where Jc(T ) is given by (2.12). In this case we say that r is a good radius for T at
x0. Moreover, by the argument preceding Definition 2.8, we also infer that for any
good radius

L〈T,dx0 ,r〉(x) = LT (x) for Hn−1-a.e. x ∈ Jc(〈T, dx0, r〉) .

As a consequence, according to Definition 2.10, we infer that the BV -energy of
〈T, dx0, r〉 is given by

E1,1(〈T, dx0, r〉, ∂ Br (x0) × Y) =
∫

∂ Br (x0)

|∇τ u(r,x0)| dHn−1 + |DC
τ u|(∂ Br (x0))

+
∫

Jc(T )∩∂ Br (x0)

LT (x) dHn−2(x) ,

(4.1)
where Dτ and ∇τ denote the distributional derivative and the approximate gradient
with respect to an orthonormal frame τ tangential to ∂ Br (x0), respectively.

Proof of Theorem 2.14. We make use of an inductive argument on the dimension
n. More precisely, we will assume that Theorem 2.13 holds true in dimension n −1,
and we use Theorem 1.7 in the case n =2. Therefore, taking into account the slicing
properties previously outlined, we may and will assume that for every x0 ∈ Bn and
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for a.e. radius r ∈ (0, r(x0)), where r(x0) > 0 is suitably chosen, by the inductive
hypothesis we find a sequence of smooth functions {vk} ⊂ C1(∂ Br (x0),Y) such
that

Gvk ⇀ 〈T, dx0, r〉 weakly in Zn−1,1(∂ Br (x0) × Y)

and ∫
∂ Br (x0)

|Dτ vk | dHn−1 → E1,1(〈T, dx0, r〉, ∂ Br (x0) × Y) . (4.2)

In particular, we have that vk ⇀ u(r,x0) weakly in the BV -sense. We divide the
proof of Theorem 2.14 in six steps.

Step 1: Definition of the fine cover Fm . We define for every m ∈ N a suitable fine
cover Fm of Bn \ Jc(T ) consisting of closed balls of radius smaller than 1/m. To
this aim, let µd and µJc be the mutually singular Radon measures on Bn given
for every Borel set B ⊂ Bn by

µd(B) :=
∫

B
|∇uT (x)| dx + |DC uT |(B) ,

µJc(B) :=
∫

Jc(T )∩B
LT (x) dHn−1(x) .

(4.3)

Definition 2.10 yields that the BV -energy of T decomposes into the “diffuse” and
“jump-concentration” part, i.e., setting

µT := µd + µJc ,

for every Borel set B ⊂ Bn we have

E1,1(T, B × Y) = µT (B) = µd(B) + µJc(B) .

By the decomposition of the derivative DuT , compare [2, Proposition 3.92], we
infer that for any point x0 in Bn \ Jc(T ) we have

lim inf
r→0

µT (Br (x0))

rn−1
= lim inf

r→0

|Du|(Br (x0))

rn−1
= 0 .

Moreover, since µJc = µJc Jc(T ), where Jc(T ) is a countably Hn−1-rectifiable
set, and µT (Jc(T )) < ∞, for every m ∈ N we find a closed subset Jm ⊂ Jc(T )

such that

Jm ⊂ Jm+1 and µT (Jc(T ) \ Jm) = µJc(Jc(T ) \ Jm) <
1

m
∀ m .

This yields in particular that

|D J uT |(JuT \ Jm) <
1

m
.
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Setting now
� := Bn \ Jc(T ) ,

Jm being closed, for every x0 ∈ � there exists a positive radius r = r(x0, m),
smaller than the distance of x0 to the boundary ∂ Bn , such that for every 0 < r <

r(x0, m)

Br (x0) ∩ Jm = ∅ .

Finally, by (4.1), if x0 ∈ �, for every 0 < r < r(x0, m) we find a good radius
ρ ∈ (r/2, r) such that

E1,1(〈T, dx0, ρ〉, ∂ Bρ(x0) × Y) ≤ 2

r
E1,1(T, Br (x0) × Y) .

We then denote by Fm the union of all the closed balls centered at points x0 ∈ �

and with good radii 0 < r < min{r(x0, m)/2, 1/m} such that

E1,1(〈T, dx0, r〉, ∂ Br (x0) × Y) ≤ 2

r
E1,1(T, B2r (x0) × Y) (4.4)

and
1

(2r)n−1
E1,1(T, B2r (x0) × Y) ≤ 1

m
. (4.5)

The above construction yields that Fm is a fine cover of � such that⋃
Fm ⊂ Bn \ Jm .

Step 2: Covering argument. We apply the following extension of the classical
Vitali-Besicovitch covering theorem, see e.g. [2, Theorem 2.19], with respect to
the positive Radon measure

µ := Ln + µT = Ln + µd + µJc ,

where Ln is the Lebesgue measure and µd , µJc are given by (4.3). In the sequel,
for any closed ball B we will denote by B̃ the closed ball centered as B and with
radius twice the radius of B, i.e.,

B̃ := B2r (x0) if B = Br (x0) .

Theorem 4.1 (Vitali-Besicovitch). Let � ⊂ Rn be a bounded Borel set, and let
F be a fine cover of � made of closed balls. For every positive Radon measure µ

in Rn there is a disjoint countable family F ′ of F such that

µ
(
� \

⋃
F ′) = 0 .

Moreover, we have ∑
B∈F ′

µ(B̃) ≤ C · µ(�) ,

where C = C(n) > 0 is an absolute constant, only depending on the dimension n.
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Proof. Following the notation in [2, Theorem 2.19], setting A0 := �, for every h ∈
N+, at the hth step we may and do apply the Besicovitch theorem [2, Theorem 2.17]
by selecting the fine cover of Ah−1 given by all the closed balls B of F such that
the corresponding balls B̃ are contained in Ah−1. Besicovitch’s theorem yields
the existence of a countable family made of closed balls B which do not intersect
more than ξ times and such that their doubles B̃ do not intersect more that η

times, where ξ = ξ(n) and η = η(n) are absolute constants. Therefore, the
disjoint family Gh satisfies ∑

B∈Gh

µ(B̃) ≤ η · µ(Ah−1)

whereas, letting Ah := Ah−1 \ ⋃Gh , we have

µ(Ah) ≤ δ µ(Ah−1) , δ := 1 − 1

2ξ
< 1.

Therefore, since µ(Ah) ≤ δh · µ(A0) for every h, we obtain∑
B∈Gh

µ(B̃) ≤ η · δh−1 · µ(�)

and finally ∑
B∈F ′

µ(B̃) =
∞∑

h=1

∑
B∈Gh

µ(B̃) ≤
∞∑

h=1

η · δh−1 · µ(�)

which yields the assertion, by taking C := η/(1 − δ).

By Theorem 4.1 we obtain for every m a suitable denumerable disjoint family
F ′

m of closed balls contained in Bn \ Jm and with radii smaller than 1/m. We
finally label

F ′
m = {

B j
}∞

j=1 , �m :=
∞⋃
j=1

B j

and notice that

µJc(�m) ≤ µJc(Bn \ Jm) <
1

m
and µd(Bn \ �m) = 0 . (4.6)

Step 3: Smoothing of the boundary data. If B j = Br (x0) ∈ F ′
m , arguing as

in Gagliardo’s theorem [11, Theorem 1.II], that states the existence of a W 1,1-
extension of any L1-function, we are able to modify the boundary datum 〈T, dx0, r〉
to a smooth W 1,1-map with values into Y . This can be done by paying an arbitrary
small amount of energy.
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More precisely, due to the inductive hypothesis, see (4.2), we find a sequence
of smooth maps {v( j)

h } ⊂ W 1,1(∂ B j ,Y) such that ‖v
( j)
h − u|∂ B j ‖L1(∂ B j )

→ 0,

G
v

( j)
h

⇀ 〈T, dx0, r〉 weakly in Zn−1,1(∂ B j × Y) (4.7)

as h → ∞ and∫
∂ B j

|Dτ v
( j)
h | dHn−1 ≤ E1,1(〈T, dx0, r〉, ∂ B j × Y) · (1 + 2−h) (4.8)

for every h. Taking k sufficiently large, we now define a map W ( j)
k ∈ W 1,1(Ar

ρk
,RN ),

where 0 < ρk < r and Ar
ρ denotes the annulus

Ar
ρ := Br (x0) \ Bρ(x0) , 0 < ρ < r ,

in such a way that W ( j)
k|∂ Br (x0)

= u|∂ Br (x0) in the sense of traces,

W ( j)
k

(
x0 + ρk

x − x0

|x − x0|
)

= v
( j)
k

(
x0 + r

x − x0

|x − x0|
)

and the energy
∫

Ar
ρk

|DW ( j)
k | dx is arbitrarily small, if ρk ↗ r sufficiently rapidly.

The function W ( j)
k is obtained by parametrizing in a sequence of annuli of the

type Aρh+1
ρh , for a suitable sequence {ρh}h≥k of radii ρh ↗ r , the affine homotopies

th v
( j)
h + (1 − th) v

( j)
h+1 , th = th(ρ) ∈ [0, 1] , ρ := |x − x0| ,

where th(ρ) is the affine map such that th(ρh) = 1 and th(ρh+1) = 0. Therefore, if
we show that for every t ∈ [0, 1] and h ≥ k the L∞-distance of t v

( j)
h +(1−t) v

( j)
h+1

from Y is small, we find that

dist(W ( j)
k (x),Y) < ε0 for Ln-a.e. x ∈ Ar

ρk
(4.9)

and hence we may and do define w
( j)
k := �ε0 ◦ W ( j)

k on Ar
ρk

, where �ε0 is the
Lipschitz projection on Y given by Remark 1.9.

To prove (4.9), due to the L1-convergence and to (4.8), by applying Poincaré
inequality we find an absolute constant cn > 0 such that, if k is sufficiently large,
for Hn−1-a.e. x ∈ ∂ Br (x0) and every h ≥ k we have∫

∂ Br (x0)

|v( j)
h (x) − u(y)| dHn−1(y)

≤
∫

∂ Br (x0)

|v( j)
h (x) − v

( j)
h (y)| dHn−1(y) + ‖v

( j)
h − u‖L1(∂ Br (x0))

≤ cn r
∫

∂ Br (x0)

|Dτ v
( j)
h | dHn−1 + ‖v

( j)
h − u‖L1(∂ Br (x0))

≤ 2 cn r · E1,1(〈T, dx0, r〉, ∂ B j × Y) .
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As a consequence, by (4.4) and (4.5) we obtain∫
∂ Br (x0)

|v( j)
h (x) − u(y)| dHn−1(y) ≤ 2n+1 · cn · rn−1

m

and hence, by convexity, for any t ∈ [0, 1] we have∫
∂ Br (x0)

|t v
( j)
h (x) + (1 − t) v

( j)
h+1(x) − u(y)| dHn−1(y)

≤
∫

∂ Br (x0)

|v( j)
h (x) − u(y)| dHn−1(y) +

∫
∂ Br (x0)

|v( j)
h+1(x) − u(y)| dHn−1(y)

< Hn−1(∂ Br (x0)) · ε0

provided that m ∈ N is large enough so that 2n+2 · cn · 1/m < ε0 · n · ωn , where
ωn is the measure of the unit n-ball. Therefore, arguing as in Schoen-Uhlenbeck
density theorem [21], we obtain

dist(t v
( j)
h (x) + (1 − t) v

( j)
h+1(x),Y) < ε0 for Hn−1-a.e. x ∈ ∂ Br (x0) , (4.10)

which yields (4.9), as required.
We remark that due to the strong convergence (4.7) (4.8), the sequence {w( j)

k }k
this way obtained also satisfies the boundary condition

〈G
w

( j)
k

, dx0, r〉 = 〈T, dx0, r〉 . (4.11)

Finally, for future use, we extend w
( j)
k to the whole ball B j by the map w̃

( j)
k :

Bρk (x0) → Y given by

w̃
( j)
k (x) :=

{
w

( j)
k ◦ ψ(r,σ )(x) if x ∈ Ar−σ

r−2σ

u ◦ φ(r,σ )(x) if x ∈ Br−2σ (x0) ,
(4.12)

where σ := r − ρk , ψ(r,σ ) : Ar−σ
r−2σ → Ar

r−σ is the reflection map

ψ(r,σ )(x) := (−|x − x0| + 2 (r − σ)
) x − x0

|x − x0|
and φ(r,σ ) : Br−2σ (x0) → Br (x0) is the homothetic map

φ(r,σ )(x) := x0 + r

r − 2σ
(x − x0) .

Notice that w̃
( j)
k is smooth on Ar−σ

r−2σ and that, taking σ small, by the property
above we may and do assume that

|Dw̃
( j)
k |(Bρk (x0)) ≤ 2|Du|(Br (x0)) . (4.13)
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Step 4: Approximation on the balls of F ′
m . Let B j = Br (x0) ∈ F ′

m . Making use of
arguments from [5], we now define an approximating sequence on B j .

We first fix some notation. For any ρ > 0, we let

Qn
ρ := [−ρ, ρ]n ⊂ R

n

denote the n-dimensional cube of side 2ρ and �i
ρ the i-dimensional skeleton of

Qn
ρ , so that

⋃
�n−1

ρ = ∂ Qn
ρ . Let ‖x‖ := max{|x1|, . . . , |xn|}, so that

Qn
ρ = {x ∈ R

n : ‖x‖ ≤ ρ} , ∂ Qn
ρ = {x ∈ R

n : ‖x‖ = ρ} .

If v : Qn
ρ → RN is any given BV -function, and F is any i-face of �i

ρ , in the
sequel we will denote

E1,1(v, F) := |Dv|F |(F)

where Dv|F is the distributional derivative of the restriction v|F of v to F , and we
let

E1,1(v, �i
ρ) :=

∑
F∈�i

ρ

E1,1(v, F) .

Recall that Y ⊂ RN , and denote by

BY(y, ε) := B
N
(y, ε) ∩ Y

the intersection of Y with the closed N -ball of radius ε centered at y. If y ∈ Y
and 0 < ε < ε0, we let �(y,ε) : RN → BY(y, ε) be the retraction map given by
�(y,ε)(z) := �ε ◦ ξ(y,ε), where

ξ(y,ε)(z) :=
 z if z ∈ B

N
(y, ε)

ε
z − y

|z − y| if z ∈ RN \ B
N
(y, ε)

and �ε : Yε → Y is the projection map given by Remark 1.9. Of course, �(y,ε)

is a Lipschitz continuous function with Lip �(y,ε) = Lip �ε → 1+ as ε → 0+.
First, letting ρ = ρk from Step 3, by means of a deformation and slicing

argument, we may and do define a bilipschitz homeomorphism ψ j : Bρ(x0) → Qn
ρ

such that ‖Dψ j ‖∞ ≤ K , ‖Dψ−1
j ‖∞ ≤ K for some absolute constant K > 0,

only depending on n. Moreover, we may and do define ψ j in such a way that

ψ j (B R(x0)) = Qn
R ∀ R ∈ (ρ/2, ρ) . (4.14)

Finally, for any given BV -function ṽ : Bρ(x0) → Y , smooth on ∂ Bρ(x0), if
v j : Qn

ρ → Y is the corresponding map given by v j := ṽ ◦ ψ−1
j , we also may and

do define ψ j in such a way that

E1,1(v j , �
i
ρ) ≤ C · 1

ρ
· E1,1(v j , �

i+1
ρ ) ∀ i = 1, . . . , n − 2 , (4.15)

where C > 0 is an absolute constant, not depending on ṽ.
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Taking ṽ = ṽ j := w̃
( j)
k from (4.12), i.e., letting

v j := w̃
( j)
k ◦ ψ−1

j : Qn
ρ → Y , (4.16)

by (4.8) and (4.15) we readily infer that

E1,1(v j , �
i
ρ) ≤ 2 C K ρi−n+1 E1,1(〈T, dx0, r〉, ∂ B j × Y) ∀ i = 1, . . . , n − 1

and hence, by (4.4), that

E1,1(v j , �
i
ρ) ≤ C̃ ρi−n E1,1(T, B2r (x0) × Y) ∀ i = 1, . . . , n − 1 . (4.17)

On the other hand, since we may assume ρ > r/2, due to (4.5) and (4.13), by (4.17)
we also obtain

1

ρi−1
E1,1(v j , �

i
ρ) ≤ C̃

1

m
∀ i = 1, . . . , n , (4.18)

where in the above formulas C̃ > 0 is an absolute constant.

Remark 4.2. Let εm := 1/
√

m. By the Sobolev embedding theorem, if m ∈ N

is sufficiently large, e.g., m ≥ 4C̃2, the inequality (4.18), with i = 1, yields that
the oscillation of v j on the 1-skeleton �1

ρ is smaller than εm/2, if v j is smooth.
Therefore, the image v j (�

1
ρ) is contained in a small geodesic ball BY(y j , εm/2)

centered at some given point y j ∈ Y . Actually, since the total variation of 1-
dimensional BV -functions estimates the oscillation, we infer that the above prop-
erty holds for BV -function v j , provided that in (4.18) we consider the total varia-
tion of the 1-dimensional restriction of v to �1

ρ . We also notice that

lim
m→+∞ εm · m = +∞

whereas, on account of Remark 1.9,

Lip �(y j ,εm) = Lip �εm → 1+ as m → +∞ .

The case n = 2. In case of dimension n = 2, we define w j : Q2
ρ → BY(y j , εm)

by
w j := �(y j ,εm) ◦ v j ,

where v j is given by (4.16), so that

|Dw j |(Q2
ρ) =: E1,1(w j , Q2

ρ) ≤ (Lip �εm ) · E1,1(v j , Q2
ρ) .

Remark 4.2 yields that w j agrees with v j on the boundary of Q2
ρ . Moreover,

letting R := ρ − σ , by (4.12), (4.14) and (4.16) we infer that w j is smooth on
Q2

ρ \ Q2
R and that

w j (x) = �(y j ,εm) ◦ (u ◦ φ(r,σ )) ◦ ψ−1
j (x) ∀ x ∈ Q2

R .
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Since the image of Q2
R by w j is contained in the geodesic ball BY(y j , εm),

by means of a convolution argument we can approximate w j on Q2
R by a smooth

sequence v
( j)
ε : Q2

R → B
N
(y j , εm) which converges in the L1-sense to w j |Q2

R
and

with total variation converging to the total variation |Dw j |(Q2
R). We finally set

w
( j)
ε := �εm ◦v

( j)
ε : Q2

R → Y , see Remark 1.9, so that clearly w
( j)
ε ⇀ w j weakly

in BV (Q2
R, RN ), whereas

E1,1(w
( j)
ε , Q2

R) ≤ (Lip �εm ) · E1,1(v
( j)
ε , Q2

R) ,

so that
lim sup

ε→0
E1,1(w

( j)
ε , Q2

R) ≤ (Lip �εm )2 · E1,1(v j , Q2
R) . (4.19)

Moreover, by suitably defining the convolution kernel, we may and do assume that
the traces are equal, so that w

( j)
ε|∂ Q2

R
= v

( j)
ε|∂ Q2

R
= w j |∂ Q2

R
. Most importantly, by

the construction we may and do assume that the boundaries of the graphs agree on
∂ Q2

R , so that

∂G
w

( j)
ε

∂ Q2
R × Y = ∂G

v
( j)
ε

∂ Q2
R × Y = ∂Gw j ∂ Q2

R × Y . (4.20)

Finally, letting w
( j)
ε = w j on Q2

ρ \ Q2
R , we define u( j)

k : Br (x0) → Y by

u( j)
k (x) :=

{
w

( j)
εk ◦ ψ j (x) if x ∈ Bρ(x0)

w
( j)
k (x) if x ∈ Br (x0) \ Bρ(x0) ,

where ρ = ρk and εk ↘ 0 along a sequence.

The case n ≥ 3. For δ := ρ(1 − η), where η := 1/q and q ∈ N+, we let
�(ρ,δ) : Qn

ρ → Qn
δ be given by

�(ρ,δ)(x) := (1 − η) x .

Note that
E1,1(v j ◦ �−1

(ρ,δ), �
i
δ) = (1 − η)i−1 E1,1(v j , �

i
ρ) , (4.21)

so that (4.18) yields

1

δi−1
E1,1(v j ◦ �−1

(ρ,δ), �
i
δ) ≤ C̃

1

m
∀ i = 1, . . . , n . (4.22)

Define w j : Qn
δ → BY(y j , εm) by

w j := �(y j ,εm) ◦ v j ◦ �−1
(ρ,δ) , (4.23)
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where v j is given by (4.16), so that

|Dw j |(Qn
δ ) =: E1,1(w j , Qn

δ ) ≤ (Lip �εm ) · E1,1(v j ◦ �−1
(ρ,δ), Qn

δ ) .

Remark 4.2 yields that w j agrees with v j ◦ �−1
(ρ,δ) on the 1-skeleton �1

δ of Qn
δ .

Moreover, letting R := (ρ − σ)(1 − η), by (4.12) and (4.14) we infer that w j is
smooth on Qn

δ \ Qn
R and that

w j (x) = �(y j ,εm) ◦ (u ◦ φ(r,σ )) ◦ ψ−1
j ◦ �−1

(ρ,δ)(x) ∀ x ∈ Qn
R .

Now, since the image of Qn
R by w j is contained in the geodesic ball BY(y j , εm),

as in the case of dimension n = 2, we approximate w j by a smooth sequence

v
( j)
ε : Qn

R → B
N
(y j , εm) which converges in the L1-sense to w j |Qn

R
, with total

variation converging to the total variation |Dw j |(Qn
R). Setting w

( j)
ε := �εm ◦v

( j)
ε :

Qn
R → Y , we have w

( j)
ε ⇀ w j weakly in BV (Qn

R, RN ), whereas

E1,1(w
( j)
ε , Qn

R) ≤ (Lip �εm ) · E1,1(v
( j)
ε , Qn

R) ,

so that again we have

lim sup
ε→0

E1,1(w
( j)
ε , Qn

R) ≤ (Lip �εm )2 · E1,1(v j ◦ �−1
(ρ,δ), Qn

R) . (4.24)

Moreover, we may and do assume that the traces of w
( j)
ε and w j on ∂ Qn

R are

equal, w
( j)
ε|∂ Qn

R
= w j |∂ Qn

R
, and that the boundaries of the graphs agree on ∂ Qn

R , i.e.,

∂G
w

( j)
ε

∂ Qn
R × Y = ∂Gw j ∂ Qn

R × Y . (4.25)

Finally set w
( j)
ε = w j on Qn

δ \ Qn
R .

In order to extend the approximating map to Qn
ρ \ Qn

δ , we use an argument
from [5]. If Sh is one of the (n − 1)-faces of �n−1

ρ , where h = 1, . . . , 2n, we may
and do define a partition of Sh into (q + 1)n−1 small (n − 1)-dimensional “cubes”
Cl,h in such a way that the following facts hold:

i) If [Cl,h]i denotes the i-dimensional skeleton of the boundary of Cl,h , the re-
striction of v j to [Cl,h]i belongs to W 1,1, for every i = 1, . . . , n−2; in particular,
v j is continuous on the 1-skeleton [Cl,h]1.

ii) If n = 3, we have

(q+1)2∑
l=1

E1,1(v j , ∂Cl,h) ≤ K

(
E1,1(v j , ∂Sh) + q

ρ
E1,1(v j , Sh)

)
, (4.26)

where K > 0 is an absolute constant.
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iii) If n ≥ 4, and [Sh]i denotes the i-dimensional skeleton of Sh , for every i =
1, . . . , n − 2 we have

(q+1)n−1∑
l=1

E1,1(v j , [Cl,h]i ) ≤ K ·
n−1∑
t=i

(
q

ρ

)t−i

· E1,1(v j , [Sh]t ) , (4.27)

where K > 0 is an absolute constant.
iv) All the Cl,h’s are bilipschitz homeomorphic to the (n−1)-cube [−ρ/q, ρ/q]n−1

by linear maps fl,h such that ‖D fl,h‖∞ ≤ K , ‖D f −1
l,h ‖∞ ≤ K .

Moreover, the inequality (4.18), with i = 2, . . . , n − 1, yields that if m ∈ N

is sufficiently large, and q satisfies

q <
1

5(n − 2) C̃
· εm

2
· m ,

we may and do define the partition of Sh in such a way that

E1,1(v j , [Cl,h]1) ≤ εm

2
∀ l = 1, . . . , (q + 1)n−1 , ∀ h = 1, . . . , 2n . (4.28)

Therefore, in the sequel we will take

q := integer part of (Ĉ · εm · m) (4.29)

for some fixed constant Ĉ > 0, say Ĉ := 1/(12 (n − 2) C̃).

Remark 4.3. Again by Remark 4.2, since the image v j (�
1
ρ) is contained in

BY(y j , εm/2), the inequalities in (4.28) yield that the image of [Cl,h]1 by v j is
contained in the geodesic ball BY(y j , εm) for every l and h. By (4.23), this yields

that the function w j , and hence the w
( j)
ε ’s, agrees with v j ◦�−1

(ρ,δ) on the 1-skeleton

�̃1
δ of ∂ Qn

δ given by

�̃1
δ := �(ρ,δ)

( 2n⋃
h=1

(q+1)n−1⋃
l=1

[Cl,h]1

)
.

Finally, if π(ρ,δ) : Qn
ρ \ Qn

δ → ∂ Qn
ρ is the projection map π(ρ,δ)(x) := ρ x/‖x‖,

setting

M(ρ,δ) := π−1
(ρ,δ) ◦ �(ρ,δ)

( 2n⋃
h=1

(q+1)n−1⋃
l=1

∂Cl,h

)
it turns out that the (n − 1)-skeleton

N(ρ,δ) := M(ρ,δ) ∪ ∂ Qn
ρ ∪ ∂ Qn

δ
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is the union of boundary of n-dimensional “cubes” Ql,h , satisfying Cl,h ⊂ ∂ Ql,h
for every l and h, that partition Qn

ρ \ Qn
δ . Moreover, each Ql,h is bilipschitz home-

omorphic to the n-cube [−ρ/q, ρ/q]n by linear maps f̃l,h such that ‖D f̃l,h‖∞ ≤
K , ‖D f̃ −1

l,h ‖∞ ≤ K , where K > 0 is an absolute constant.

We now extend the approximating map to the interior of Qn
ρ \ Qn

δ , first con-
sidering the simpler case n = 3.

The case n = 3. We first set w j := v j on ∂ Q3
ρ and

w j := v j ◦ π(ρ,δ)(x) on M(ρ,δ) .

By Remark 4.3, the function w j is smooth on the 2-skeleton N(ρ,δ). We then
extend w j to the whole of Q3

ρ \ Q3
δ by means of a radial extension on each cube

Ql,h , i.e., by setting

w j (x) := w j

(
f̃ −1
l,h

(
ρ

q
· f̃l,h(x)

‖ f̃l,h(x)‖
))

, x ∈ Ql,h , ∀ l, h . (4.30)

The function w j this way constructed is smooth on the closure of Q3
ρ \ Q3

δ , up to a
discrete set of points. Moreover, denoting by C > 0 an absolute constant, possibly
varying from line to line, but not depending on ρ or m, we have

E1,1(w j , Ql,h) ≤ C
ρ

q
E1,1(w j , ∂ Ql,h) ,

whereas

E1,1(w j , ∂ Ql,h) ≤ C

(
E1,1(v j , Cl,h) + ρ

q
E1,1(v j , ∂Cl,h)

)
.

Therefore, by (4.26), and by summing on l and h, we estimate

E1,1(w j , Q3
ρ \ Q3

δ) ≤ C

(
ρ

q
E1,1(v j , �

2
ρ) +

(
ρ

q

)2

E1,1(v j , �
1
ρ)

)
.

Finally, by (4.29) and (4.17) we obtain, for m > 1/Ĉ2,

E1,1(w j , Q3
ρ \ Q3

δ) ≤ C
1

εm · m
E1,1(T, B2r (x0) × Y) . (4.31)

The case n ≥ 4. According to Remark 4.3, we first set w j := v j on ∂ Qn
ρ and

w j := v j ◦ π(ρ,δ)(x) on π−1
(ρ,δ)(�̃

1
δ ) .

To extend w j to the whole of Qn
ρ \ Qn

δ , we argue by iteration on the dimension i =
3 . . . , n. More precisely, if F is any i-dimensional face of [Ql,h]i with disjoint
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interior from both ∂ Qn
ρ and ∂ Qn

δ , we extend w j to the interior of F by means of
a suitable radial extension of the boundary datum of w j on ∂ F similar to the one
in (4.30), so that

E1,1(w j , F) ≤ C
ρ

q
E1,1(w j , ∂ F) .

Therefore, by the construction, and for (4.27), we readily infer that

E1,1(w j , Qn
ρ \ Qn

δ ) ≤ C
n−1∑
i=1

(
ρ

q

)n−i

E1,1(v j , �
i
ρ) ,

so that by (4.29) and (4.17) we obtain again, for m > 1/Ĉ2,

E1,1(w j , Qn
ρ \ Qn

δ ) ≤ C
1

εm · m
E1,1(T, B2r (x0) × Y) . (4.32)

Remark 4.4. For future use, we notice that for any n ≥ 3 the function w j this
way constructed is smooth on the closure of Qn

ρ \ Qn
δ , up to a “smooth” closed

(n − 3)-dimensional set. This yields that the graph of w j has no boundary in the
interior of Qn

ρ \ Qn
δ , i.e.,

∂Gw j = 0 on Zn−1,1(int(Qn
ρ \ Qn

δ ) × Y) .

We finally set for any n ≥ 3

w̃( j)
ε (x) :=

{
w

( j)
ε (x) if x ∈ Qn

δ
w j (x) if x ∈ Qn

ρ \ Qn
δ

and define u( j)
k : Br (x0) → Y by

u( j)
k (x) :=

{
w̃

( j)
εk ◦ ψ j (x) if x ∈ Bρ(x0)

w
( j)
k (x) if x ∈ Br (x0) \ Bρ(x0) ,

where ρ = ρk and εk ↘ 0 along a sequence.

Step 5: Approximating maps on the whole domain. For any n ≥ 2 we define now
u(m)

k : Bn → Y by

u(m)
k (x) :=

{
u( j)

k (x) if x ∈ B j , j ∈ N

uT (x) if x ∈ Bn \ �m ,
�m :=

∞⋃
j=1

B j . (4.33)

By Step 4 we know that u( j)
k ∈ W 1,1(B j ,Y) for every j and k. Moreover, by

(4.6), and since u( j)
k = uT on ∂ B j for every j , we infer that u(m)

k is for every k a

function in BV (Bn,Y), with null Cantor part, |DC u(m)
k | = 0.
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We now deal with the energy estimates of u(m)
k , first considering the simpler

case n = 2.

The case n = 2. By (4.19) and Step 3 we infer that

lim sup
k→∞

E1,1(u
(m)
k , �m) ≤ (Lip �εm )2 · |DuT |(�m) ,

whereas by (4.6)

|DuT |(�m) ≤ µd(�m) + 1

m
.

By a diagonal argument, setting um := u(m)
km

for a suitable sequence km → ∞ as
m → ∞, we infer that

lim
m→∞ |Dum |(B2) = |DuT |(B2) .

The case n ≥ 3. By (4.31) and (4.32) we infer that

∞∑
j=1

E1,1(u
(m)
k , ψ−1

j (Qn
ρ \ Qn

δ )) ≤ C
1

εm · m

∞∑
j=1

E1,1(T, B̃ j × Y) ,

whereas by Theorem 4.1, on account of (4.3), we obtain

∞∑
j=1

E1,1(T, B̃ j × Y) ≤ C ·
(
E1,1(T, Bn × Y) + Ln(Bn)

)
< ∞ ,

and 1/(εm · m) → 0 as m → ∞, see Remark 4.2. On the other hand, by (4.24),
and since η → 0 as m → ∞ in (4.21), as in the case n = 2 we estimate the
energy of u(m)

k on the sets ψ−1
j (Qn

δ ). In particular, setting um := u(m)
km

for suitable
sequence km → ∞ as m → ∞, we infer that

lim
m→∞

∞∑
j=1

E1,1(um, ψ−1
j (Qn

δ )) = µd(Bn)

and hence, by Step 3, that for any n ≥ 2

lim
m→∞ |Dum |(Bn) = |DuT |(Bn) . (4.34)

Moreover, in any dimension n ≥ 2, since for every j the radius of the ball B j in

F ′
m is smaller than 1/m, and u(m)

k = uT on ∂ B j , the above energy estimates and
the Poincaré inequality yield that for m sufficiently large∫

Bn
|um − uT | dx =

∞∑
j=1

∫
B j

|u(m)
km

− uT | dx ≤
∞∑
j=1

Cn · 1

m
· |DuT |(B j )

≤ Cn · 1

m
· |DuT |(Bn) ,



THE BV-ENERGY OF MAPS INTO A MANIFOLD 525

where Cn > 0 is an absolute constant. This proves the L1-convergence of um to
uT as m → ∞, and hence weakly in the BV -sense.

Finally, for future use, we observe that by the definition of um , on account of
(4.6), the previous construction yields that the jump part of Dum strictly converges
to the jump part of DuT . Therefore, denoting by

D̃um := Daum + DC um , D̃uT := DauT + DC uT ,

the diffuse part of Dum and DuT, where we recall that the Cantor part |DCum |(Bn)=
0 for every m, by (4.34) we have

D̃um ⇀ D̃uT and |D̃um |(Bn) → |D̃uT |(Bn) . (4.35)

Step 6: Approximating currents. For every m and k let T (m)
k ∈ Dn,1(Bn × Y) be

given by

T (m)
k :=

∞∑
j=1

G
u( j)

k
int(B j ) × Y + T (Bn \ �m) × Y ,

where u( j)
k ∈ W 1,1(B j ,Y) is defined by (4.33). Since the boundary ∂G

u( j)
k

int(B j )×
Y = 0, whereas

∂(G
u( j)

k
int(B j ) × Y) = 〈T, dx0, r〉 ,

we readily infer that T (m)
k ∈ cart1,1(Bn × Y), with corresponding function in

BV (Bn,Y) given by u(m)
k , see (4.33). Setting Tm := T (m)

km
, where the sequence

km → ∞ is defined as in Step 5, by (4.6) and (4.35) we readily infer that

lim
m→∞ E1,1(Tm, �m × Y) = |D̃uT |(Bn) , (4.36)

which clearly yields that

lim
m→∞ E1,1(Tm, Bn × Y) = E1,1(T, Bn × Y) .

It therefore remains to show that, possibly taking a subsequence,

Tm ⇀ T weakly in Zn,1(Bn × Y) . (4.37)

By applying Theorem 2.15, the proof of which is independent of the one of The-
orem 2.14, every Tm is the weak limit of a sequence of smooth graphs of maps
v

(m)
k ∈ C1(Bn,Y), with energies converging to the energy of Tm . Therefore, since

supm E1,1(Tm, Bn × Y) < ∞, arguing as in the first part of Section 2, by a diago-
nal argument we may and do assume that, possibly passing to a subsequence, Tm
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weakly converges in Zn,1(Bn × Y) to some current T̃ ∈ cart1,1(Bn × Y). Sim-
ilarly, by the lower semicontinuity theorem for smooth graphs, Theorem 2.12, we
infer that for any open set A ⊂ Bn we have

E1,1(T̃ , A × Y) ≤ lim inf
m→∞ E1,1(Tm, A × Y) . (4.38)

Moreover, since the sequence of functions {um} ⊂ BV (Bn,Y) corresponding to
the Tm’s weakly converges in the BV -sense to uT ∈ BV (Bn,Y), we infer that uT
is the BV -function corresponding to T̃ .

We first show that T̃ agrees with T on � × Y , where

� := Bn \ Jc(T ) ,

Jc(T ) being the set of points of jump-concentration of T . Fix m0 ∈ N. Since

� ⊂ �m ⊂ Am , Am := Bn \ Jm ,

and {Jm} is an increasing sequence of closed sets, for any m ≥ m0 we infer that

Am0 = �m ∪ [(Jc(T ) \ Jm0) \ �m] ,

with disjoint union. Moreover, we recall that Tm is equal to T out of �m × Y .
Therefore, since by (4.6)

E1,1(T, [(Jc(T ) \ Jm0) \ �m] × Y) ≤ 1

m0
,

by (4.38) and (4.36) we obtain

E1,1(T̃ , Am0 × Y) ≤ |D̃uT |(Bn) + lim inf
m→∞ E1,1(Tm, [(Jc(T ) \ Jm0) \ �m] × Y)

≤ |D̃uT |(Bn) + lim inf
m→∞ E1,1(T, [(Jc(T ) \ Jm0) \ �m] × Y)

≤ |D̃uT |(Bn) + 1/m0 .

By outer regularity, since |D̃uT |(Jc(T )) = 0 and Am ↘ � as m → ∞, we infer
that

E1,1(T̃ , � × Y) ≤ |D̃uT |(�) .

Therefore, decomposing the energy of T̃ into its diffuse and jump-concentration
part, see (4.3), we infer that the jump-concentration part is concentrated in the jump-
concentration set of T , so that

Jc(T̃ ) ⊂ Jc(T ) and T̃ � × Y = T � × Y .

We now show that T̃ agrees with T on Jc(T )×Y , which concludes the proof. As
before, since Tm is equal to T out of �m × Y , and �m ∩ Jm0 = ∅ if m ≥ m0,
for every form ω ∈ Zn,1(Bn × Y) we have

((T̃ −T ) Jm0 × Y)(ω) = ((T̃ −Tm) Jm0 × Y)(ω) + ((Tm −T ) Jm0 × Y)(ω)

= ((T̃ −Tm) Jm0 × Y)(ω) → 0
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as m → ∞, by the weak convergence of Tm to T̃ . This yields that

T̃ Jm0 × Y = T Jm0 × Y

and finally the assertion, by inner regularity, since Jm ↗ Jc(T ) in the Hn−1-sense
as m → ∞.

5. The density theorem: part II

In this section we prove Theorem 2.15. Extending the notation from the previous
section, see (4.3), in the sequel for every current T̃ ∈ cart1,1(Bn × Y) we will
denote by µJc,T̃ the Radon measure on Bn given for every Borel set B ⊂ Bn by

µJc,T̃ (B) :=
∫

Jc(T̃ )∩B
LT̃ (x) dHn−1(x) , (5.1)

that corresponds to the jump-concentration part of the BV -energy E1,1(T̃ , B ×Y).
We also recall that if T̃ ∈ cart1,1(Bn × Y) satisfies |DC uT̃ | = 0, for every Borel
set B ⊂ Bn

E1,1(T̃ , B × Y) =
∫

B
|∇uT̃ (x)| dx + µJc,T̃ (B) .

Moreover, for any T̃ as above, in this section we will denote by F(T̃ ) the flat norm
given by

F(T̃ ) := sup{T̃ (φ) | φ ∈ Zn−1(Bn × Y) , F(φ) ≤ 1} ,

where

F(φ) := max

{
sup

z∈Bn×Y
‖φ(z)‖ , sup

z∈Bn×Y
‖dφ(z)‖

}
,

and we notice that the flat convergence F(Tk − T ) → 0 yields the weak conver-
gence Tk ⇀ T weakly in Zn,1(B̃n × Y), compare [22].

Proof of Theorem 2.15. It is based on the following:

Proposition 5.1. Let T̃ ∈ cart1,1(Bn × Y) be such that |DC uT̃ |(Bn) = 0. Let
ε ∈ (0, 1/2) and k ∈ N. We can find a current T̂ ∈ cart1,1(Bn × Y) such that

E1,1(T̂ , Bn × Y) ≤ E1,1(T̃ , Bn × Y) + εk , F(T̂ − T̃ ) ≤ εk ,

µJc,T̂ (Bn) ≤ 1

2
· µJc,T̃ (Bn) and |DC uT̂ | = 0 .

(5.2)
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In fact, for any ε ∈ (0, 1/2) we apply iteratively Proposition 5.1 as follows.
Letting T ε

0 := T , at the kth step, in correspondence of T̃ := T ε
k−1 we find T̂ :=

T ε
k such that (5.2) holds true. By induction on k ∈ N, we define T ε := T ε∞ ∈

cart1,1(Bn × Y) such that

E1,1(T ε, Bn × Y) ≤ E1,1(T, Bn × Y) +
∞∑

k=1

εk ≤ E1,1(T, Bn × Y) + 2ε

and |DC uT ε | = 0. Moreover, since for every k

µJc,T ε
k
(Bn) ≤ 2−k · µJc,T (Bn) ,

letting k → ∞ we obtain that µJc,T ε (Bn) = 0. Finally, since

F(T ε − T ) ≤
∞∑

k=1

F(T ε
k − T ε

k−1) ≤
∞∑

k=1

εk ≤ 2ε ,

letting Tk := T εk for some sequence εk ↘ 0, and uk := uTk , we infer that
the sequence {Tk} ⊂ cart1,1(Bn × Y) weakly converges to T with E1,1(Tk) →
E1,1(T ) as k → ∞. Moreover, since |DC uk |(Bn) = 0 and µJc,Tk (Bn) = 0 for
every k, we obtain that uk ∈ W 1,1(Bn,Y) and that Tk agrees with the current Guk

given by the integration of forms in Zn,1(Bn ×Y) over the rectifiable graph of uk ,
see (2.1), so that E1,1(Tk) = E1,1(uk).

By means of Bethuel’s density theorem [5], for every k we find a smooth
sequence {u(k)

h }h ⊂ C1(Bn,Y) that strongly converges to uk in the W 1,1-sense
as h → ∞. In fact, even if the first homotopy group π1(Y) is non-trivial, being
commutative it is homeomorphic to the first homology group H1(Y). Therefore,
the null-boundary condition

∂Guk = 0 on Zn−1,1(Bn × Y) (5.3)

allows to remove the (n − 2)-dimensional singularities, compare [6] and e.g. [16].
Lower dimensional singularities are removed as in [5]. Since the strong conver-
gence yields G

u(k)
h

⇀ Guk with E1,1(u
(k)
h ) → E1,1(uk), the assertion follows by

means of a diagonal argument.

Remark 5.2. This is the exact point where the commutativity hypothesis on the
first homotopy group π1(Y) is used, in addition to (5.3). If π1(Y) is non-abelian,
even in dimension n = 2 we find functions u ∈ W 1,1(B2,Y), smooth outside
the origin and satisfying (5.3), such that for every sequence of smooth maps uh :
Bn → Y for which Guh ⇀ Gu weakly in Zn,1(Bn × Y) we have

lim inf
h→∞

∫
B2

|Duh | dx ≥ C +
∫

B2
|Du| dx

for some absolute constant C > 0, compare [17].
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Proof of Proposition 5.1. We set T̃ = T , for simplicity, and divide the proof in
four steps.

Step 1: Blow-up argument. We apply the argument by Federer [9, 4.2.19]. The
rectifiable measure µJc,T can be written as

µJc,T = LT Hn−1 Jc(T ) ,

where the jump-concentration set Jc(T ) is countably Hn−1-rectifiable and the den-
sity LT (x) is a non-negative Hn−1 Jc(T )-summable function on Jc(T ). There-
fore, by [9, 3.2.29] there exists a countable family G of (n − 1)-dimensional C1-
submanifolds M j of Bn such that µJc,T -almost all of Bn is covered by G.
Moreover, since µJc,T (Bn) < ∞, we can find a positive number θ > 0 so that the
subset

J := {x ∈ Jc(T ) | LT (x) > θ}
satisfies the following properties:

Hn−1(J ) < ∞ and µJc(Bn \ J ) <
1

4
· µJc,T (Bn) . (5.4)

Let σ > 0 to be fixed. By [9, 2.10.19], by the Vitali-Besicovitch theorem, Theo-
rem 3.2, and by the properties of the class cart1,1(Bn × Y) we can find a number
tσ ∈ (0, 1), a countable disjoint family of closed balls B j , contained in Bn and
centered at points in J , and a bilipschitz homeomorphism ψσ from Bn onto itself
satisfying the properties listed below, where c > 0 is an absolute constant, possi-
bly varying from line to line, which is independent of σ and of the radii r j of the
balls B j .

i) µJc,T (Bn \ ⋃
j B j ) = 0.

ii) If B j := B(p j ,r j ), for every j there is a manifold M j of G such that p j ∈ M j .
iii) Since Hn−1(J ) < ∞, then

∞∑
j=1

r j
n−1 ≤ c · Hn−1(J ) < ∞ . (5.5)

iv) Letting C j := B(p j , tσ r j ) ∩ M j , we have

µJc,T (B(p j , r j ) \ C j ) ≤ σ · µJc,T (B(p j , r j )) ∀ j . (5.6)

v) If p j /∈ JuT , it is a Lebesgue point of uT whereas, if p j ∈ JuT , the one-sided
approximate limits of uT at p j are well-defined.

vi) The 1-dimensional restriction π̂#(T {p j } × Y) is well-defined, compare Defi-
nition 2.8, and

π̂#(T {p j } × Y) =  j

for some integral chain  j ∈ D1(Y).
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vii) If ηp j ,λ : Rn × RN → Rn × RN denotes the “blow-up” map ηp j ,λ(x, y) :=(
x − p j

λ
, y

)
, the limit current

S j (ω) := lim
λ→0+ ηp j ,λ#T (ω) , ω ∈ Zn,1(Bn × Y)

is well-defined, and the flat distance of T from S j is small on B j × Y , i.e.

F(S j B j × Y − T B j × Y) ≤ c · σ · r j
n−1 . (5.7)

viii) Since |DuT |(B) ≤ µT (B), we have

|DuT |(B(p j , r j ) \ C j )

ωn−1r j
n−1

≤ c · σ , (5.8)

where ωn−1 is the measure of the (n − 1)-dimensional unit ball.
ix) Since LT (p j ) is the (n − 1)-dimensional density of µJc,T at p j , we have

|µJc,T (B j ) − LT (p j ) · ωn−1 r j
n−1| ≤ σ · ωn−1 r j

n−1 . (5.9)

x) Lip ψσ ≤ 2 and Lip ψ−1
σ ≤ 2. Moreover, ψσ maps bijectively B j onto B j ,

with ψσ |∂ B j = I d|∂ B j and ψσ (p j ) = p j for all j , and ψσ is equal to the
identity outside the union of the balls B j .

xi) ψσ (C j ) = B(p j , ρ j ) ∩ (p j + Tan(M j , p j )) for every j , where Tan(M j , p j )

is the (n − 1)-dimensional tangent space to M j at p j and ρ j ∈ (r j/2, r j ).

As a consequence, defining T σ
j ∈ Dn,1(int(B j ) × Y) for any j by

T σ
j := (ψσ �� IdRN )#(T int(B j ) × Y) ,

we infer that T σ
j belongs to cart1,1(int(B j ) × Y) and its corresponding function

uσ
j := uT σ

j
∈ BV (int(B j ),Y) is given by

uσ
j := (uT ◦ ψ−1

σ )| int(B j ) .

Moreover, we clearly have

µJc,T σ
j

= ψσ#(µJc,T int(B j )) .

Step 2: Approximation on the balls B j . We now apply for every j a “dipole con-
struction” to approximate almost all the Jump-concentration part of T σ

j . Set

x = (̃x, xn) ∈ R
n−1 × R .
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Without loss of generality we may and will assume that

B j = B
n
R , B(p j , ρ j ) = Bn

r , 0 < r < R ,

where Bn
r := Bn(0, r), so that R = r j and r = ρ j , and

B(p j , ρ j )∩(p j +Tan(M j , p j ))= Dr ×{0} ⊂ R
n−1×R, Dr := Bn−1(0Rn−1, r).

Let y(̃x) := (r − |̃x |) denote the distance of x̃ from the boundary of the (n − 1)-
disk Dr . For δ > 0 small, let

φδ(x) := (̃x, ϕδ(y(̃x))xn) , x ∈ Dr × [−1, 1] , ϕδ(y) := min{y, δ} .

Let �δ := φδ(Dr × [−1, 1]) be the “neighborhood” of Dr × {0} in Bn
R given by

�δ = {(̃x, xn) | x̃ ∈ Dr , ρ ≤ ϕδ(y(̃x))} ,

where ρ := |xn|, and let

�̃δ := φδ(Dr × [−1/2, 1/2]) = {(̃x, xn) | x̃ ∈ Dr , ρ ≤ ϕδ(y(̃x))/2} .

Also, set
�(r,δ) := �δ \ (Dr × {0}) .

Let vσ
j : (�δ\�̃δ) → Y be given by vσ

j (x) := uσ
j ◦ψσ

j (x), where ψσ
j : �δ\�̃δ →

�(r,δ) is the bijective map

ψσ
j (̃x, xn) :=

(
x̃,

(
2 − ϕδ(y(̃x))

ρ

)
xn

)
.

Since we have

|∇vσ
j (x)| ≤ c |∇uσ

j (̃x, (2 − ϕδ(y(̃x))/ρ) xn)| · (1 + ϕδ(y(̃x))/ρ) ,

and ϕδ(y(̃x))/ρ ∈]1/2, 1], we infer that vσ
j ∈ BV (�δ \ �̃δ,Y), with∫

�δ\�̃δ

|∇vσ
j | dx ≤ c

∫
�δ

|∇uσ
j | dx . (5.10)

Moreover, the current

T
σ

j := ((ψσ
j )−1 �� IdRN )#(T σ

j (int(�(r,δ)) × Y))

belongs to cart1,1(int(�δ \ �̃δ) × Y), its underlying BV -function is vσ
j , and T

σ

j
satisfies

µJc,T
σ
j
(int(�δ \ �̃δ)) ≤ µJc,T σ

j
(int(�(r,δ))) ,
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so that by (5.6) we have

µT
σ
j
(int(�δ \ �̃δ)) ≤ c σµT σ

j
(Bn

r ) . (5.11)

We now define wσ
j : (�δ \ �̃δ) → RN by

wσ
j (x) :=

(
2ρ

ϕδ(y(̃x))
− 1

)
· vσ

j (̃x, xn) +
(

2 − 2ρ

ϕδ(y(̃x))

)
· z±

j ,

where ± is the sign of xn and z±
j are the one-sided approximate limits of uσ

j at
the point 0 ∈ Juσ

j
, so that

lim
ρ→0+ ρ−n

∫
B±

ρ

|uσ
j (x) − z±

j | dx = 0 ,

if p j belongs to the jump set of uσ
j , and they agree with the Lebesgue value of uσ

j
at p j , otherwise.

If r − δ ≤ |̃x | ≤ r and (r − |̃x |)/2 < ρ < (r − |̃x |), then

|∇wσ
j |(x) ≤ c

r − |̃x | |vσ
j (x) − z±

j | + c |∇vσ
j (x)| ,

whereas if |̃x | ≤ r − δ and δ/2 < ρ < δ, we estimate

|∇wσ
j |(x) ≤ c

δ
|vσ

j (x) − z±
j | + c |∇vσ

j (x)| .

Moreover, by (5.8) and the Poincaré inequality we infer that the oscillation of uσ
j

on the upper and lower half-balls

B±
r := {x ∈ Bn

r | ±xn > 0}
is smaller than c σ , so that

‖vσ
j (x) − z±

j ‖∞,�δ\�̃δ
≤ c σ .

As a consequence, on account of (5.10) we obtain∫
�δ\�̃δ

|∇wσ
j | dx ≤ c σ Ln(�δ \ �̃δ) + c

∫
�δ\�̃δ

|∇vσ
j | dx

≤ c σ Ln(�δ \ �̃δ) + c
∫

�δ

|∇uσ
j | dx

(5.12)

which is small if δ and σ are small, by the absolute continuity. Also, since the
oscillation of wσ

j is smaller than c σ , by projecting wσ
j into the manifold Y , see
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Remark 1.9, we may and will assume that wσ
j is a function in BV (�δ \ �̃δ,Y).

We finally observe that

wσ
j (̃x, ±ϕδ(y(̃x))/2) = z±

j ∀ x̃ ∈ Dr .

Now, by means of the vertical part of the current T
σ

j , we may and do define a

current T̃ σ
j ∈ cart1,1(int(�δ \ �̃δ) × Y), with underlying BV -function wσ

j , such
that

µJc,T̃ σ
j
(int(�δ \ �̃δ)) ≤ c µJc,T

σ
j
(int(�δ \ �̃δ))

and T̃ σ
j satisfies the boundary condition

∂ T̃ σ
j = ∂T σ

j ∂�δ × Y + [[ ∂�̃δ ∩ B+
r ]] × δz+

j
− [[ ∂�̃δ ∩ B−

r ]] × δz−
j
.

In particular, by (5.11) and (5.12), taking δ small, we infer that T̃ σ
j satisfies the

energy estimate

E1,1(T̃ σ
j , int(�δ \ �̃δ) × Y) =

∫
�δ\�̃δ

|∇wσ
j | dx + µJc,T̃ σ

j
(int(�δ \ �̃δ))

≤ c σ rn−1 + c σµJc,T σ
j
(Bn

r ) .

Due to the property vi) above, setting

T̂ σ
j := T̃ σ

j + T σ
j (Bn

R \ �δ) × Y ,

we infer that T̂ σ
j belongs to cart1,1((Bn

R \�̃δ)×Y), satisfies the boundary condition

∂ T̂ σ
j = ∂T σ

j ∂ Bn
R × Y − [[ ∂ Dr × {0} ]] ×  j

+[[ ∂�̃δ ∩ B+
r ]] × δz+

j
− [[ ∂�̃δ ∩ B−

r ]] × δz−
j

(5.13)

and the energy estimate

E1,1(T̂ σ
j , (Bn

R \ �̃δ) × Y) ≤
∫

Bn
R

|∇uσ
j | dx

+c σ rn−1 + c σµJc,T σ
j
(Bn

r ) .

(5.14)

To extend T̂ σ
j to a current in cart1,1(int(B j ) × Y), we notice that Jc(T σ

j ) =
ψσ (Jc(T ) ∩ int(B j )). Moreover, if γ j ∈ T (p j ) satisfies (1.7), of course γ j
belongs to T σ

j
(p j ) and satisfies

L(γ j ) = LT σ
j
(p j ) = LT (p j )



534 MARIANO GIAQUINTA AND DOMENICO MUCCI

and γ j#[[ (0, 1) ]] =  j , see property vi). We define vσ
j : �̃δ → Y by setting

vσ
j (x) := γ j

(1

2
+ xn

ϕδ(y(̃x))

)
, x̃ ∈ Dr , ρ ≤ ϕδ(y(̃x))/2 ,

where the orientation of γ j is chosen in such a way that γ j (0) = z−
j and γ0(1) =

z+
j , so that ∂[[ γ j ]] = δz+ − δz− . Since

vσ
j (x) := (v ◦ φ−1

δ )(x) , x ∈ φδ(Dr × [−1/2, 1/2]) ,

where v : Dr × [−1/2, 1/2] → Y is given by v(̃x, t) := γ̃ j (1/2 + t), we readily
estimate∫

�̃δ

|Dvσ
j | dx ≤ L(γ j ) · (Ln−1(Dr−δ) + cLn−1(Dr \ Dr−δ))

≤ σ rn−1 + Ln−1(Dr ) · LT σ
j
(p j )

(5.15)

if δ > 0 is small. Setting now

T̃ (σ )
j := T̂ σ

j + Gvσ
j
,

where Gvσ
j

is the current integration over the graph of vσ
j , the above construction

and the boundary condition (5.13) yield that T̃ (σ )
j has no boundary in int(B j )×Y ,

so that T̃ (σ )
j belongs to cart1,1(int(B j ) × Y). Moreover, by (5.14) and (5.15), on

account of the property vi) above, we obtain that

E1,1(T̃ (σ )
j , int(B j ) × Y) ≤ E1,1(T σ

j , Bn
R × Y)

+c σ rn−1 + c σµJc,T σ
j
(Bn

r ) .
(5.16)

We finally notice that T̃ (σ )
j agrees with T σ

j outside �δ × Y .

Step 3: Flat distance. We now show that for δ small enough

F(T̃ (σ )
j Bn

R × Y − T σ
j Bn

R × Y) ≤ c · σ · Rn−1 . (5.17)

In fact, by the property vii) above the blow-up current

S̃ j (ω) := lim
λ→0+ η0,λ#T σ

j (ω) , ω ∈ Zn,1(Bn
R × Y)

is well-defined, and by property vi) it satisfies

S̃ j = [[ B+
R ]] × δz+ + [[ B−

R ]] × δz− + [[ Dr ]] ×  j ,
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where ∂ j = δz+ − δz− . On the other hand, (5.7) yields that

F(S̃ j Bn
R × Y − T σ

j Bn
R × Y) ≤ c · σ · Rn−1 . (5.18)

Also, by the definition of vσ
j we infer that for δ > 0 small

F(S̃ j �̃δ × Y − Gvσ
j

�̃δ × Y) ≤ c · σ · rn−1 .

Moreover, the BV -energy of T̃ (σ )
j on (�δ \�̃δ)×Y is small if δ is small, whereas

T̃ (σ )
j agrees with T σ

j outside �δ × Y . By (5.18) we then obtain

F(S̃ j (Bn
R \ �̃δ) × Y − T̃ (σ )

j (Bn
R \ �̃δ) × Y) ≤ c · σ · Rn−1

and finally (5.17), as r ∈ (R/2, R).

Step 4: Approximation on the whole domain. Setting now

T (σ )
j := (ψ−1

σ �� IdRN )#(T̃ (σ )
j int(B j ) × Y) ,

by (5.16), since r = ρ j ∈ (r j/2, r j ), we infer that for every j

E1,1(T (σ )
j , int(B j )×Y) ≤

∫
B j

|∇uT | dx+(1+c σ) µJc,T (B j )+c σ r j
n−1 , (5.19)

whereas by (5.17), since R = r j , we obtain that

F(T (σ )
j int(B j ) × Y − T int(B j ) × Y) ≤ c · σ · r j

n−1 . (5.20)

Let now T σ ∈ cart1,1(Bn × Y) be given by

T σ :=
∞∑
j=1

T (σ )
j + T

(
Bn \

∞⋃
j=1

int(B j )

)
× Y .

By (5.19) and (5.5) we obtain that

E1,1(T σ , Bn × Y) ≤
∫

Bn
|∇uT | dx + (1 + c σ) µJc,T (Bn) + c σ Hn−1(J ) ,

so that if σ = σ(ε, k, J, µJc,T ) > 0 is small, we have

E1,1(T σ , Bn × Y) ≤ E1,1(T, Bn × Y) + εk .
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Moreover, by (5.4) and (5.6), taking σ small, the above construction yields that

µJc,T σ (Bn) ≤ c
∞∑
j=1

µJc,T (B j \ C j ) + µJc,T (Bn \ J )

≤ c σ µJc,T (Bn) + 1

4
µJc,T (Bn) <

1

2
· µJc,T (Bn) .

Finally, by (5.20) we have

F(T σ − T ) ≤
∞∑
j=1

F(T (σ )
j int(B j ) × Y − T int(B j ) × Y)

≤ c · σ

∞∑
j=1

r j
n−1 < εk

if σ = σ(ε, k) > 0 is small. Since DuT σ has no Cantor part, the proof is
complete.

6. The total variation of BV-functions

Extending the classical notion of total variation of vector-valued maps, to every
map u ∈ BV (Bn,Y) we associate in a natural way its total variation, essentially
in the sense of Jordan, given for every Borel set B ⊂ Bn by

ET V (u, B) :=
∫

B
|∇u(x)| dx + |DC u|(B) +

∫
Ju∩B

H1(lx ) dHn−1(x) . (6.1)

Here, for any x ∈ Ju , we let H1(lx ) denote the length of a geodesic arc lx in Y
with initial and final points u−(x) and u+(x). Moreover we set

ET V (u) := ET V (u, Bn) .

Note that if u is smooth, at least in W 1,1(Bn,Y), then

ET V (u, B) = E1,1(u, B) :=
∫

B
|Du| dx .

Moreover, clearly for every u ∈ BV (Bn,Y) we have

|Du|(B) ≤ ET V (u, B) .

Lower semicontinuity. In a way similar to Theorems 1.7 and 2.12, it is not difficult
to prove in any dimension n the following:
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Proposition 6.1. Let u ∈ BV (Bn,Y). For every sequence of smooth maps {uk} ⊂
C1(Bn,Y) such that uk ⇀ u weakly in the BV -sense, we have

ET V (u) ≤ lim inf
k→∞ ET V (uk) .

The previous definition is motivated by the 1-dimensional case, n = 1. In fact,
similarly to Theorem 1.8, we can prove the following:

Theorem 6.2. For every u ∈ BV (B1,Y) there exists a sequence of smooth maps
{uk} ⊂ C∞(B1,Y) such that uk ⇀ u weakly in the BV -sense and ET V (uk) →
ET V (u) as k → ∞.

Density results for Sobolev maps. If n ≥ 2, we denote by R∞
1 (Bn,Y) the set of

all the maps u ∈ W 1,1(Bn,Y) which are smooth except on a singular set �(u) of
the type

�(u) =
r⋃

i=1

�i , r ∈ N ,

where �i is a smooth (n − 2)-dimensional subset of Bn with smooth boundary, if
n ≥ 3, and �i is a point if n = 2. The following density results appear in [5].

Theorem 6.3. The class R∞
1 (Bn,Y) is strongly dense in W 1,1(Bn,Y).

Theorem 6.4. The class C1(Bn,Y) is dense in R∞
1 (Bn,Y) in the strong W 1,1-

topology if and only if π1(Y) = 0.

Using arguments from the proof of Theorem 2.13, it is not difficult to extend
Theorem 6.3 to maps in BV (Bn,Y), by proving:

Theorem 6.5. For every u ∈ BV (Bn,Y) there exists a sequence of maps {uk} ⊂
R∞

1 (Bn,Y) such that uk ⇀ u as k → ∞ weakly in the BV -sense and

lim
k→∞

∫
Bn

|Duk | dx = ET V (u, Bn) . (6.2)

As a consequence, by using Theorem 6.4 we immediately obtain:

Corollary 6.6. Suppose that π1(Y) = 0. For every u ∈ BV (Bn,Y) there exists
a sequence of smooth maps {uk} ⊂ C1(Bn,Y) such that uk ⇀ u as k → ∞
weakly in the BV -sense and (6.2) holds true.

Currents carried by BV-functions. Following Section 2, the structure of a func-
tion u in BV (Bn,Y) suggests to associate to u a suitable current G = Tu ∈
BV -graph(Bn × Y), see Definition 2.1, where the function u(Tu) ∈ BV (Bn,Y)

is equal to u and the γx ’s in the definition of the jump part G J
u agree for every

x ∈ Ju with an oriented geodesic arc lx in Y with initial and final points respec-
tively given by u−(x) and u+(x), so that ∂[[ lx ]] = δu+(x) − δu−(x). We notice



538 MARIANO GIAQUINTA AND DOMENICO MUCCI

that the definition of Tu depends on the choice of the geodesics lx . In particular,
if u ∈ W 1,1(Bn,Y), clearly Tu = T a

u and hence Tu agrees with the current Gu

integration of forms in Dn,1(Bn × Y) over the rectifiable graph of u, see (2.1).
Now, Definition 2.5 yields that the parametric variational integral F1,1 associated
to the total variation integral is such that for every Borel set B ⊂ Bn

F1,1(Tu, B × Y) = ET V (u, B) ∀ u ∈ BV (Bn,Y) .

Moreover, arguing as in the proof of Theorem 2.13, we readily extend Theorems 6.2
and 6.5 by proving in any dimension n ≥ 2

Theorem 6.7. For every u ∈ BV (Bn,Y) we find the existence of a sequence of
maps {uk} ⊂ R∞

1 (Bn,Y) such that uk ⇀ u weakly in the BV -sense, Guk ⇀ Tu
weakly in Zn,1(Bn × Y) and

lim
k→∞

∫
Bn

|Duk | dx = ET V (u, Bn) .

Remark 6.8. If n ≥ 2 in general the current Tu has a non zero boundary in Bn ×
Y , compare Remark 2.2. However, as shown by Proposition 6.9 below, ∂Tu is null
on every (n − 1)-form ω̃ in Bn × Y which has no “vertical” differentials. To this
purpose, following Proposition 2.3, any smooth (n − 1)-form ω̃ ∈ Dn−1(Bn × Y)

with no vertical differentials can be written as ω̃ := ωϕ ∧ η for some η ∈ C∞
0 (Y)

and ϕ = (ϕ1, . . . , ϕn) ∈ C∞
0 (Bn, Rn), where ωϕ is given by (2.5). Since dx ω̃ =

dωϕ ∧ η = div ϕ(x) η(y) dx , by Definition 2.1 we have

∂x Tu(ω̃) := Tu(dx ω̃) = Tu(div ϕ(x) η(y) dx)

=
∫

Bn
divϕ(x) · η(u(x)) dx .

We now show that ∂y Tu(ω̃) = −∂x Tu(ω̃), which yields the assertion.

Proposition 6.9. We have

∂y Tu(ωϕ ∧ η) := Tu(dy(ωϕ ∧ η))

= −
∫

Bn
divϕ(x) · η(u(x)) dx =: 〈D(η ◦ u), ϕ〉 .

Proof. Since

dy(ωϕ ∧ η) = (−1)n−1ωϕ ∧ dyη

=
N∑

j=1

n∑
i=1

(−1)n−iϕi (x)
∂η

∂y j
(y) d̂xi ∧ dy j
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taking φ
j
i = ϕi η,y j in (2.2), by the definition of Tu we infer

(−1)n−1Tu(ωϕ ∧ dyη) =
N∑

j=1

∫
Bn

∂η

∂y j
(u(x))〈∇u j (x), ϕ(x)〉 dx

+
N∑

j=1

∫
Bn

∂η

∂y j
(u(x)) ϕ(x) d DC u j

+
∫

Ju

(
η(u+(x)) − η(u−(x)

)〈ϕ(x), ν(x)〉 dHn−1 .

Therefore, by the chain rule formula for the distributional derivative of η ◦ u, com-
pare [2], we obtain the assertion, as

Tu(dy(ωϕ ∧ η)) = (−1)n−1Tu(ωϕ ∧ dyη)) = 〈D(η ◦ u), ϕ〉 .

Remark 6.10. If G is any current in BV -graph(Bn × Y) with corresponding
function u(G) ∈ BV (Bn,Y) equal to u, see Definition 2.1, arguing as in Proposi-
tion 6.9 we obtain again that

∂x G(ωϕ ∧ η) = −∂yG(ωϕ ∧ η) =
∫

Bn
divϕ(x) · η(u(x)) dx .

Example 6.11. Of course, compare Section 2, every Cartesian current T in
cart1,1(Bn × Y) may be decomposed as

T = Tu + ST on Zn,1(Bn × Y) , (6.3)

where u = uT ∈ BV (Bn,Y) is the BV -function corresponding to T and Tu ∈
BV -graph(Bn × Y) is defined as above, by means of geodesic arcs connecting
u−(x) and u+(x) at the points x in the jump set Ju . However, even in dimension
n = 1 and in the particular case Y = S1, the unit sphere, in general it may happen
that the BV -energy of T cannot be recovered by the sum of the BV -energies of its
component Tu and ST in (6.3). If Y = S1, in fact, we have ST,sing = 0, i.e., the
equivalence classes of elements in cart1,1(Bn × S1) have a unique representative,
and the energies E1,1(T ) and F1,1(T ) are equal, i.e., no gap phenomenon occurs.
Consider the current T θ ∈ cart1,1(B1 × S1) given by

T θ := [[ (−1, 0) ]] × δP0 + [[ (0, 1) ]] × δPθ + δ0 × γθ , θ ∈ [0, 2π ] ,

where Pθ = (cos θ, sin θ) and γθ is the simple arc in S1 connecting the points
P0 and Pθ in the counterclockwise sense. If π < θ < 2π we clearly have

Tu = [[ (−1, 0) ]] × δP0 + [[ (0, 1) ]] × δPθ + δ0 × γ̃θ ,
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where γ̃θ is the simple arc in S1 connecting the points P0 and Pθ in the clockwise
sense, so that we may decompose T θ as in (6.3) with ST = δ0 × [[ S1 ]]. Since

F1,1(Tu) = H1(γ̃θ ) = 2π − θ , F1,1(ST ) = 2π ,

we infer that the sum of the energies F1,1(Tu)+F1,1(ST ) is greater than the energy
of T θ , as clearly

E1,1(T θ ) = F1,1(T θ ) = H1(γθ ) = θ .

7. The relaxed BV-energy of functions

In this section we analyze the lower semicontinuous envelope of the total variation,
defined for every function u ∈ BV (Bn,Y) by

ẼT V (u) := inf

{
lim inf
k→∞

∫
Bn

|Duk | dx | {uk} ⊂ C1(Bn,Y) ,

uk ⇀ u weakly in the BV -sense

}
.

Remark 7.1. Of course one may equivalently require that uk → u strongly in
L1(Bn, RN ).

We first recall the following facts.

Definition 7.2. For every k = 2, . . . , n and  ∈ Dn−k(Bn), we denote by

mi,Bn () := inf{M(L) | L ∈ Rn−k+1(Bn) , (∂L) Bn = }
the integral mass of  and by

mr,Bn () := inf{M(D) | D ∈ Dn−k+1(Bn) , (∂ D) Bn = }
the real mass of . Moreover, in case mi,Bn () < ∞, we say that an integer
multiplicity rectifiable current L ∈ Rn−k+1(Bn) is an integral minimal connection
of  if (∂L) Bn =  and M(L) = mi,Bn ().

We also recall that by Federer’s theorem [10], and by Hardt-Pitts’ result [18],
respectively, in the cases k = n and k = 2 we have that

mi,Bn () = mr,Bn () . (7.1)

Vertical homology classes. Let u ∈ W 1,1(Bn,Y) and let Gu be the current
integration of forms in Dn,1(Bn × Y) over the rectifiable graph of u, see (2.1).
We have that ∂Gu(ω) = 0 if ω ∈ Dn−1,1(Bn × Y) with ω(1) = 0 or dyω = 0.
Setting

B p,1(Bn × Y) := {ω ∈ D p,1(Bn × Y) | ∃ η ∈ D p−1,0(Bn × Y) : ω(1) = dyη}
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and

Hp,1(Bn × Y) := Z p,1(Bn × Y)

B p,1(Bn × Y)
,

then ∂Gu = 0 on Bn−1,1(Bn × Y) and ∂y∂Gu = 0, whence ∂Gu(ω) depends
only on the cohomology class of ω ∈ Zn−1,1(Bn × Y). As a consequence ∂Gu
induces a functional (∂Gu)� on Hn−1,1(Bn × Y) given by

(∂Gu)�(ω + Bn−1,1) := ∂Gu(ω + Bn−1,1) = ∂Gu(ω) , ω ∈ Zn−1,1 ,

compare [14], Vol. II, Section 5.4.1. Therefore, since

Hp,1(Bn × Y) $ D p−1(Bn) ⊗ H1
d R(Y) ,

the homology map (∂Gu)� is uniquely represented as an element of Dn−2(Bn;
H1(Y; R)). More explicitly, if φ ∈ Dn−2(Bn), we have [(∂Gu)�(φ)] ∈ H1(Y; R)

and for s = 1, . . . , s

〈(∂Gu)�(φ), [ωs]〉 = ∂Gu(π#φ ∧ π̂#ωs) ,

〈, 〉 denoting the de Rham duality between H1(Y; R) and H1
d R(Y): in general

(∂Gu)� is non-trivial.

Singularities of Sobolev maps. Following [14], Vol. II, Section 5.4.2, we now set

P(u) := (∂Gu)� ∈ Dn−2(Bn; H1(Y; R))

and for each ω∈ [ω]∈H1
d R(Y) we define the current P(u;ω) :=−π#((∂Gu) π̂#ω)∈

Dn−2(Bn), so that

P(u; ω)(φ) = −∂Gu(π̂#ω ∧ π#φ) = Gu(π̂#ω ∧ π#dφ) =
∫

Bn
u#ω ∧ dφ

for every φ ∈ Dn−2(Bn). We also define for every ω ∈ Z1(Y) the current
D(u; ω) := π#(Gu π̂#ω) ∈ Dn−1(Bn), so that

D(u; ω)(γ ) = Gu(π̂#ω ∧ π#γ ) =
∫

Bn
u#ω ∧ γ ∀ γ ∈ Dn−1(Bn) .

The following facts hold:

(i) for s = 1, . . . , s
P(u; ωs)(φ) = 〈P(u)(φ), [ωs]〉 ,

i.e., P(u; ωs) does not depend on the representative in the cohomology class
[ωs];
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(ii) ∂ P(u) = 0 and P(u) =
s∑

s=1
P(u; ωs) ⊗ [γs], hence it does not depend on the

choice of γ1, . . . , γs ;
(iii) ∂ D(u; ω)(φ) = 〈P(u)(φ), [ω]〉 and hence ∂ D(u; ω̃s) Bn = P(u; ω̃s) for

each representative ω̃s in [ωs].

We can therefore set

Ds(u) :=D(u; ωs), Ps(u) :=P(u; ωs) = ∂ Ds(u) Bn, s =1, . . . , s . (7.2)

Notice that if T ∈ cart1,1(Bn × Y) satisfies

T = Gu + ST , ST =
s∑

s=1
Ls(T ) × γs on Zn,1(Bn × Y) ,

where u = uT ∈ W 1,1(Bn,Y) and Ls(T ) ∈ Rn−1(Bn), since

(−1)n−2∂Gu(π̂#ωs ∧ π#φ) = ∂Gu(π#φ ∧ π̂#ωs) = −∂ST (π#φ ∧ π̂#ωs)

= −∂ Ls(T )(φ) ,

we infer that

Ps(u) = (−1)n ∂ Ls(T ) Bn ∀ s = 1, . . . , s . (7.3)

Finally, we clearly have P(u) = 0 if u is smooth, say Lipschitz, or at least in
W 1,2(Bn,Y).

Results. In the sequel we shall assume that the first homotopy group π1(Y) is
commutative. Moreover, we denote by

Tu := {T ∈ cart1,1(Bn,Y) | uT = u} (7.4)

the class of Cartesian currents T in cart1,1(Bn ×Y) such that the underlying BV -
function uT is equal to u, compare Definition 2.11 and Remark 2.7. We first prove

Theorem 7.3. For every u ∈ BV (Bn,Y) we have ẼT V (u) < ∞.

From the results of the previous sections we then obtain the following repre-
sentation result.

Theorem 7.4. For any u ∈ BV (Bn,Y) we have

ẼT V (u) = inf{E1,1(T ) | T ∈ Tu}
=

∫
Bn

|∇u(x)| dx + |DC u|(Bn)

+ inf

{∫
Jc(T )

LT (x) dHn−1(x) | T ∈ Tu

}
,

(7.5)

where Tu, Jc(T ), and LT (x) are given by (7.4), (2.12), and Definition 2.9, re-
spectively.
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Proof of Theorem 7.3. We observe that it suffices to show that the class Tu is
non-empty, see (7.4). In this case, in fact, if T ∈ Tu , by Theorem 2.13 we find a
smooth sequence {uk} ⊂ C1(Bn,Y) such that Guk ⇀ T weakly in Zn,1(Bn ×Y)

and ‖Duk‖L1 → E1,1(T ) as k → ∞; this yields also that uk ⇀ uT weakly in the
BV -sense, where uT = u, whence ẼT V (u) < ∞.

Now let us prove that Tu is non-empty. We first notice that, since Y is smooth
and compact, there exists an absolute constant C > 0, depending on Y , such that

ET V (u, Bn) < C |Du|(Bn) < ∞ .

Let {uk} be the approximating sequence given by Theorem 6.7. Since uk ∈
R∞

1 (Bn,Y), the real mass of the singularities is bounded by the L1-norm of Duk .
More precisely, there exists an absolute constant C > 0 such that

mr,Bn (Ps(uk)) ≤ C
∫

Bn
|Duk | dx ∀s = 1, . . . , s ,

see Definition 7.2. In fact, we have

M
(
Ds(uk)

) = sup

{∫
Bn

φ ∧ (
u#

kω
s) | φ ∈ Dn−1(Bn) , ‖φ‖ ≤ 1

}
≤ C

∫
Bn

|Duk | dx ,

see Proposition 7.6 below for the case Y = S1, so that the assertion follows from
(7.2). Therefore, since by Hardt-Pitts’ result (7.1) we have

mi,Bn (Ps(uk)) = mr,Bn (Ps(uk)) ,

we find for every s an integer multiplicity rectifiable current L
k
s ∈ Rn−1(Bn) such

that

Ps(uk) = (−1)n (∂ L
k
s ) Bn and M(L

k
s ) ≤ C

∫
Bn

|Duk | dx , (7.6)

compare (7.3). As a consequence, letting

Tk := Guk +
s∑

s=1
L

k
s ×γs ,

we readily find that Tk ∈ Dn,1(Bn × Y) has no interior boundary

∂Tk = 0 on Zn−1,1(Bn × Y)

and finite BV -energy

E1,1(Tk) ≤
∫

Bn
|Duk | dx + C(Y)

s∑
s=1

M(L
k
s ) · M(γs) < ∞
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for some absolute constant C(Y) > 0. In conclusion, by (7.6) we obtain a sequence
{Tk} ⊂ cart1,1(Bn × Y) with equibounded energies

sup
k

E1,1(Tk) ≤ sup
k

C
∫

Bn
|Duk | dx ≤ C ET V (u, Bn) < ∞ ,

where C > 0 is an absolute constant. Therefore, by compactness, Proposition 2.18,
possibly passing to a subsequence we find that Tk ⇀ T weakly in Zn,1(Bn × Y)

to some T ∈ cart1,1(Bn × Y) satisfying

E1,1(T ) ≤ lim inf
k→∞ E1,1(Tk) < ∞

by lower semicontinuity, Proposition 2.16. In particular, since uk ⇀ u weakly in
the BV -sense, we find that the underlying BV -function uT = u and hence that
T ∈ Tu .

Proof of Theorem 7.4. Let {uk} ⊂ C1(Bn,Y) be a sequence of smooth maps
with equibounded energies, supk ‖Duk‖L1 < ∞, weakly converging to u in the
BV -sense, see Theorem 7.3. By compactness, Proposition 2.18, possibly passing
to a subsequence we find that Guk ⇀ T weakly in Zn,1(Bn × Y) to some T ∈
cart1,1(Bn × Y) satisfying uT = u, i.e. T ∈ Tu , see (7.4). Since by lower
semicontinuity, Proposition 2.16,

E1,1(T ) ≤ lim inf
k→∞

∫
Bn

|Duk | dx ,

we readily conclude that

inf{E1,1(T ) | T ∈ Tu} ≤ ẼT V (u) .

To prove the opposite inequality, by applying Theorem 2.13, for every T ∈ Tu
we find a smooth sequence {uk} ⊂ C1(Bn,Y) such that Guk ⇀ T weakly in
Zn,1(Bn ×Y) and ‖Duk‖L1 → E1,1(T ) as k → ∞. Since the weak convergence
Guk ⇀ T yields the convergence uk ⇀ uT weakly in the BV -sense, and uT = u,
we find that ẼT V (u) ≤ E1,1(T ), which proves the first equality in (7.5). The second
equality in (7.5) follows from the definition of BV -energy, Definition 2.10.

The above results simplify if we specify them to u ∈ W 1,1(Bn,Y) and/or
Y = S1, recovering this way previous results, compare e.g. [13], [8], and [19].

The relaxed W1,1-energy. The relaxed energy of u ∈ W 1,1(Bn,Y) is of course
given by

Ẽ1,1(u) := inf

lim inf
k→∞

∫
Bn

|Duk | dx |{uk}⊂C1(Bn,Y), uk →u strongly in L1(Bn,RN )

,

see Remark 7.1. In this case, Theorem 7.4 reads as:
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Corollary 7.5. For any u ∈ W 1,1(Bn,Y) we have Ẽ1,1(u) < ∞. Every T ∈ Tu
has the form

T = Gu +
∑

q∈H1(Y)

Lq ×Cq on Zn,1(Bn × Y) ,

where Lq =τ(Lq , 1,
−→L q) is an integer multiplicity rectifiable current in Rn−1(Bn)

and Cq ∈ Z1(Y) is an integral 1-cycle in the homology class q, and its BV -energy
is given by

E1,1(T ) =
∫

Bn
|Du| dx +

∑
q∈H1(Y)

∫
Lq

LT (x) dHn−1(x)

where, for x ∈ Lq , we have LT (x) := inf{L(γ ) | γ ∈ q(x)} and

q(x) := {γ ∈ Lip([0, 1],Y) | γ (0) = γ (1) = u(x) , γ#[[ (0, 1) ]] ∈ q} .

The relaxed energy is given by

Ẽ1,1(u) =
∫

Bn
|Du(x)| dx + inf

{ ∑
q∈H1(Y)

∫
Lq

LT (x) dHn−1(x) | T ∈ Tu

}
.

The case Y = S1. Further simplification arises if we assume Y = S1. In this case,
in fact, ST,sing = 0, i.e. the equivalence classes of elements in cart1,1(Bn × S1)

have a unique representative, and the energies E1,1(T ) and F1,1(T ) are equal, i.e.,
no gap phenomenon occurs. Moreover, if x belongs to the jump-concentration set
Jc(T ), the 1-dimensional restriction has the form

π̂#(T {x} × S1) = [[ γx ]] + q [[ S1 ]] ,

where q ∈ Z and [[ γx ]] is the current associated to a suitably oriented simple arc
γx in S1 connecting the points u−

T (x) and u+
T (x), where uT is the function in

BV (Bn, S1) associated to T , and γx = 0 if x /∈ JuT . Consequently, in (7.5) we
have

LT (x) = H1(γx ) + 2π |q|
and hence in cart1,1(Bn × S1) the BV -energy agrees with the energy obtained in
[13], compare Theorem 1 of [14, Vol. II, Section 6.2.3].

The singular set. If u ∈ W 1,1(Bn, S1), its singular set is the current P(u) ∈
Dn−2(Bn) given by

P(u)(φ) := − 1

2π
∂Gu(π#ωS1 ∧ π#φ) = 1

2π

∫
Bn

u#ωS1 ∧ dφ (7.7)

for every φ ∈ Dn−2(Bn), where

ωS1 := y1dy2 − y2dy1
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is the volume 1-form in S1 ⊂ R2. Therefore, P(u) is the boundary of the current
D(u) ∈ Dn−1(Bn) defined for any γ ∈ Dn−1(Bn) by

D(u)(γ ) := 1

2π
Gu(π#ωS1 ∧ π#γ ) = 1

2π

∫
Bn

u#ωS1 ∧ γ .

Proposition 7.6. For every u ∈ W 1,1(Bn, S1) we have

M(D(u)) ≤ 1

2π

∫
Bn

|Du| dx .

Proof. By the definition of mass we clearly infer

2π M
(
D(u)

) ≤
∫

Bn
‖u#ωS1‖ dx .

Moreover, since u#ωS1 = u1du2 − u2du1, we estimate

‖u#ωS1‖2 ≤
n∑

i=1

|u1 u2
xi

− u2 u1
xi

|2 ≤
n∑

i=1

(|u1| |u2
xi

| + |u1| |u2
xi

|)2 .

Observe now that for any a, b > 0 and λ, µ > 0 with λ2 + µ2 = 1

λ a + µ b ≤
√

a2 + b2 .

Since |u(x)| = 1, this yields (|u1| |u2
xi

| + |u1| |u2
xi

|)2 ≤ |Dxi u|2 and hence the
assertion.

We now recover the following estimates about the relaxed energy, compare [8]
and [19].

Proposition 7.7. For every u ∈ W 1,1(Bn, S1) we have

Ẽ1,1(u) ≤ 2 E1,1(u) , where E1,1(u) :=
∫

Bn
|Du| dx . (7.8)

Moreover, for every u ∈ BV (Bn, S1) we have

ẼT V (u) ≤ 2 ET V (u) , (7.9)

where ET V (u) is the total variation of u, given by (6.1).

Proof. Let u ∈ W1,1(Bn,S1). Proposition 7.6 yields that the real mass mr,Bn(P(u))≤
E1,1(u, Bn)/2π and hence, on account of Hardt-Pitts’ result (7.1), the integral mass

mi,Bn (P(u)) ≤ 1

2π
E1,1(u) ,
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see Definition 7.2. As a consequence, since for every ε > 0 we find a current
T ∈ Tu such that

T = Gu + L × [[ S1 ]] and E1,1(T ) = E1,1(u) + 2π M(L) ,

where L ∈ Rn−1(Bn) satisfies M(L) ≤ mi,Bn (P(u)) + ε, taking into account
Theorem 7.4 we obtain (7.8).

In the more general case u ∈ BV (Bn, S1), Theorem 6.7 yields the existence
of a sequence {uk} ⊂ W 1,1(Bn, S1) such that uk ⇀ u weakly in the BV -sense
and E1,1(uk) → ET V (u). Also, for every k we find a smooth sequence {u(k)

h }h ⊂
C1(Bn, S1) converging to uk strongly in L1 and such that E1,1(u

(k)
h ) → Ẽ1,1(uk)

+1/k as h → ∞. Finally, by (7.8) and by a diagonal argument we readily obtain
(7.9).

Remark 7.8. As in [20], since π1(Y) is commutative, if u ∈ R∞
1 (Bn,Y), for

every s = 1, . . . , s we may find an integral current Ls ∈ Rn−2(Bn) satisfying

(−1)n(∂Ls) Bn = Ps(u) and M(Ls) ≤ C
∫

Bn
|Du| dx

for some absolute constant C > 0 independent of u. Therefore, arguing as above
it is not difficult to show that

Ẽ1,1(u) ≤ C(n,Y) · E1,1(u) ∀ u ∈ W 1,1(Bn,Y) , (7.10)

where C(n,Y) > 0 is an absolute constant, only depending on n and Y . Finally,
by Theorem 6.7 we conclude that

ẼT V (u) ≤ C(n,Y) · ET V (u) ∀ u ∈ BV (Bn,Y) ,

where ET V (u) is the total variation given by (6.1) and the optimal constant C(n,Y)

is the same as the optimal constant for W 1,1-functions in (7.10).
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Viale G. P. Usberti 53/A
I-43100 Parma, Italy
domenico.mucci@unipr.it


