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On isometries of the Carathéodory and
Kobayashi metrics on strongly pseudoconvex domains

HARISH SESHADRI AND KAUSHAL VERMA

Abstract. Let �1 and �2 be strongly pseudoconvex domains in C
n and f :

�1 → �2 an isometry for the Kobayashi or Carathéodory metrics. Suppose that
f extends as a C1 map to �̄1. We then prove that f |∂�1 : ∂�1 → ∂�2 is a CR
or anti-CR diffeomorphism. It follows that �1 and �2 must be biholomorphic or
anti-biholomorphic.

Mathematics Subject Classification (2000): 32F45 (primary); 32Q45 (sec-
ondary).

1. Introduction

Complex Finsler metrics such as the Carathéodory and Kobayashi [14] metrics and
Kähler metrics such as the Bergman and Cheng-Yau Kähler-Einstein metrics [5]
have proved to be very useful in the study functions of several complex variables.
Since biholomorphic mappings are isometries for these metrics, they are referred to
as ‘intrinsic’.

This work is motivated by the question of whether (anti)-biholomorphic map-
pings are the only isometries for these metrics, i.e., is any isometry f : �1 → �2
between two domains �1 and �2 in Cn (on which the appropriate intrinsic metrics
are non-degenerate) holomorphic or anti-holomorphic?

To be more precise by what we mean by an isometry, let F� and d� denote an
intrinsic Finsler metric and the induced distance on a domain �. In this paper by
a C0-isometry we mean a distance-preserving bijection between the metric spaces
(�1, d�1) and (�2, d�2). For k ≥ 1, a Ck-isometry is a Ck-diffeomorphism f
from �1 to �2 with f ∗(F�2) = F�1 . A Ck-isometry, k ≥ 1, is a C0-isometry and
if the Finsler metric comes from a smooth Riemannian metric (as is the case with
the Bergman and the Cheng-Yau metrics), the converse is also true by a classical
theorem of Myers and Steenrod.
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The question above makes sense for a large class of domains (for example bounded
domains). However, we confine ourselves to bounded strongly pseudoconvex do-
mains in this paper.

We note that the question has been answered in the affirmative (for strongly
pseudoconvex domains) for the Bergman and the Kähler-Einstein metrics in [12].
The proof is essentially based on the fact that the metric under consideration is
a Kähler metric whose holomorphic sectional curvatures tend to −1 as one ap-
proaches the boundary of the domain. Note that the Bergman metric and the Kähler-
Einstein metric both have this property.

The case of the Carathéodory and the Kobayashi metrics is more delicate. A
technical reason is that these metrics are Finsler, not Riemannian, and moreover
they are just continuous and not smooth for general strongly pseudoconvex do-
mains. Despite these issues, the results in this paper indicate that the answer to the
main question might be in the affirmative.

Before stating our results we remark that all domains we consider have at least
C2-boundaries. Our main theorem asserts that, an isometry is indeed a holomorphic
mapping at ‘infinity’.

Theorem 1.1. Let f : �1 → �2 be a C1-isometry of two bounded strongly pseu-
doconvex domains in Cn equipped with the Kobayashi metrics. Suppose that f
extends as a C1 map to �̄1. Then f |∂�1 : ∂�1 → ∂�2 is a CR or anti-CR diffeo-
morphism. Hence �1 and �2 must be holomorphic or anti-biholomorphic.

A similar statement holds for the inner-Carathéodory metric if we assume that
∂�1 and ∂�2 are C3-smooth.

A few comments about the C1-extension assumption: any C1-isometry be-
tween strongly pseudoconvex domains �1 and �2 equipped with the Kobayashi or
inner-Carathéodory metrics extends to a C1/2 (Hölder continuous with exponent
1/2) map of �1 by the results of [1]. See also the remark after Lemma 3.2. A
key ingredient in the proof of this result is that strongly pseudoconvex domains
equipped with the Kobayashi or inner-Carathéodory metrics are Gromov hyper-
bolic.

It would be interesting and desirable to prove the C1- extension property for
Kobayashi/inner-Carathéodory isometries and hence render the assumption in The-
orem 1.1 unnecessary. More precisely, what needs to be investigated is whether
C1/2 -boundary regularity implies C1-boundary regularity of the given C1-isometry.
This is known to be valid for holomorphic mappings and the reader is referred to
[19, 24] and [8] among others for further details. Thus the study of isometries
seems to fit in naturally with the study of the boundary behaviour of holomorphic
mappings.

We now summarize the ideas behind the proof of Theorem 1.1. The main
idea is to use the rescaling technique of Pinchuk [25] to study the derivative of the
isometry at a boundary point. We construct a sequence of rescalings of the isometry
near a boundary point p and show that this sequence converges (see Proposition
3.2 and 3.3) to an (anti)-holomorphic automorphism of the unbounded realization
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of the ball in Cn . On the other hand, we observe that the horizontal components
of these rescalings converge to the horizontal component of the derivative of the
isometry at p. Here by a ‘horizontal’ vector we mean a vector in the maximal
complex subspace of the tangent space at a boundary point of the domain. In fact,
we show that the restriction of the derivative to the horizontal subspace at p can
be related to the values of the holomorphic automorphism acting on certain points
in the ball (see Lemma 4.2). This fact is crucial; indeed, in conjunction with the
(anti)-holomorphic limit of the scaled isometries, it allows us to show the complex-
linearity of the derivative on the horizontal subspace of the tangent space of p.
Much of the technical work in the proof is in showing the convergence of metrics
under Pinchuk rescalings which is needed to show that the scaled isometries are a
‘normal’ family. This problem is not faced when dealing with scaled holomorphic
mappings.

To the best of our knowledge, this interpretation (cf. Lemma 4.2) of Pinchuk
rescaling that relates the derivative on the boundary in the horizontal direction to
values of the (anti)-holomorphic limit at certain points in the ball is new. It may
be possible to use this interpretation to re-formulate the question about boundary
regularity of holomorphic mappings in terms of the scaling method.

A related theme that has been studied in detail is the following: What can be
said about a holomorphic mapping between two domains in Cn which is known to
be an isometry in some fixed Finsler metric in the domain and range, at a single
point? The reader is referred to [4, 11, 20] and [29] which study this question, the
conclusion in all being that the holomorphic mapping is biholomorphic. The main
theorem dispenses with the hypothesis of having a global holomorphic mapping and
replaces it with a global isometry at the expense of assuming some apriori boundary
regularity.

The first important technical lemma that we need is about the behaviour of the
distance to the boundary under isometries (Lemma 2.2). Here we use the two-sided
estimates for the Kobayashi distance obtained in [1].

2. Preliminaries

2.1. The Kobayashi and Carathéodory metrics

Let � denote the open unit disc in C and let ρ(a, b) denote the distance between
two points a, b ∈ � with respect to the Poincáre metric (of constant curvature −4).

Let � be a domain in Cn . The Kobayashi, the Carathéodory and the inner-

Carathéodory distances on �, denoted by d K
� , dC

� and dC̃
� respectively, are defined

as follows:
Let z ∈ � and v ∈ Tz� a tangent vector at z. Define the associated infinitesi-

mal Kobayashi and Carathéodory metrics as

F K
� (z, v) = inf

{
1

α
: α > 0, φ ∈ O(�, �) with φ(0) = z, φ′(0) = αv

}
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and
FC̃

� (z, v) = sup {|d f (z)v| : f ∈ O(�, �)},
respectively. The inner-Carathéodory length and the Kobayashi length of a piece-
wise C1 curve σ : [0, 1] → � are given by

lC̃ (σ ) =
∫ 1

0
FC̃

� (σ, σ ′)d t and l K (σ ) =
∫ 1

0
F K

� (σ, σ ′)d t ,

respectively. Finally the Kobayashi and inner-Carathéodory distances between p, q
are defined by

d K
� (p, q) = inf {l K (p, q)} and dC̃

�(p, q) = inf {lC̃ (p, q)},
where the infimums are taken over all piece-wise C1 curves in � joining p and q.

The Carathéodory distance is defined to be

dC
�(p, q) = sup {ρ( f (p), f (q)) : f ∈ O(�, �)}.

We note the following well-known and easy facts:

• If � is a bounded domain, then d K
� , dC

� and dC̃
� are non-degenerate and the

topology induced by these distances is the Euclidean topology.
• These distance functions are invariant under biholomorphisms. More gener-

ally, holomorphic mappings are distance non-increasing. The same holds for

F K
� (z, v) and FC̃

� (z, v).
• We always have

dC
�(p, q) ≤ dC̃

�(p, q) ≤ d K
� (p, q).

• If � = Bn , all the distance functions above coincide and are equal to the dis-
tance function of the Bergman metric g0 on Bn . Here the Bergman metric is a
complete Kähler metric normalized to have constant holomorphic sectional cur-
vature −4. Also, for Bn , the infinitesimal Kobayashi and Carathéodory metrics
are both equal to the quadratic form associated to g0.

2.2. Convexity and Pseudoconvexity

Suppose � is a bounded domain in Cn , n ≥ 2, with C2-smooth boundary. Let
ρ : Cn → R be a smooth defining function for �, i.e, ρ = 0 on ∂�, dρ �= 0 at any
point of ∂� and ρ−1(−∞, 0) = �.

A domain with C2 smooth boundary � is said to be strongly convex if there is
a defining function ρ for ∂� such that the real Hessian of ρ is positive definite as a
bilinear form on Tp∂�, for every p ∈ ∂�.

� is strictly convex if the interior of the straight line segment joining any two
points in � is contained in �. Note that we do not demand the boundary of � be
smooth. Strong convexity implies strict convexity.
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Let � be a bounded domain. A holomorphic map φ : � → � is said to be an
extremal disc or a complex geodesic for the Kobayashi metric (or distance) if it is
distance preserving, i.e. d K

� (φ(p), φ(q)) = ρ(p, q) for all p, q ∈ �.
The following fundamental theorem about complex geodesics in strictly con-

vex domains will be repeatedly used in Section 3 of this paper:

Theorem 2.1 (L. Lempert [16]). Let � be a bounded strictly convex domain in Cn.

(1) Given p ∈ � and v ∈ Cn, there exists a complex geodesic φ with φ(0) = p
and φ′(0) = v (or dφ (T0�) = Pv , where Pv ⊂ Tp� is the real -two plane
generated by the complex vector v).
φ also preserves the infinitesimal metric, i.e., F K

� (φ(q); dφ(w)) = F�(q; w)

for all w ∈ Tq�.
(2) Given p and q in �, there exists a complex geodesic φ whose image contains p

and q.

(3) The Kobayashi, Carathéodory and inner-Carathéodory distances coincide on
�. Also, the Kobayashi and Carthéodory infinitesimal metrics coincide on �.

The Levi form of the defining function ρ at p ∈ Cn is defined by

L p(v) =
n∑

i, j=1

∂2ρ

∂zi∂ z̄ j
(p)viv j for v = (v1, .., vn) ∈ C

n.

For p ∈ ∂�, the maximal complex subspace of the tangent space Tp∂� is denoted
by Hp(∂�) and called the horizontal subspace at p. By definition, � is strongly
pseudoconvex if L p is positive definite on Hp(∂�) for all p ∈ ∂�. It can be checked
that strong convexity implies strong pseudoconvexity.

For a strongly pseudoconvex domain, the Carnot-Carathéodory metric on ∂�

is defined as follows. A piecewise C1 curve α : [0, 1] → ∂� is called horizontal if
α̇(t) ∈ Hα(t)(∂�) wherever α̇(t) exists. The strong pseudoconvexity of � implies
that ∂� is connected and, in fact, any two points can be connected by a horizontal

curve. The Levi-length of a curve α is defined by l(α) = ∫ 1
0 Lα(t)(α̇(t))

1
2 d t . Finally

the Carnot-Carathéodory metric is defined, for any p, q ∈ ∂�, by

dH (p, q) = inf
α

l(α),

where the infimum is taken over horizontal curves α : [0, 1] → ∂� with α(0) = p
and α(1) = q.

2.3. Notation

◦ � := {z ∈ C : |z| < 1}, �r := {z ∈ C : |z| < r}.
◦ ρ = distance function on � of the Poincáre metric of curvature −4.
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◦ For n ≥ 2, Bn := {z ∈ Cn : |z| < 1} and Ba(r) = {z ∈ Cn : |z − a| < r}.
◦ �z = {z = (z1, . . . , zn) ∈ Cn : 2 Re zn + |z1|2 + . . . + |zn−1|2 < 0}, the

unbounded realization of the ball Bn , which is a Siegel domain.

◦ Hp(∂�) ⊂ Tp∂� denotes the horizontal subspace of Tp∂�, p ∈ ∂�.

◦ Given p ∈ ∂�, for any v ∈ Cn , v = vH + vN corresponds to Cn = Hp(∂�) ⊕
Hp(∂�)⊥.

◦ z = (z̃, zn) corresponds to Cn = Cn−1 × C.

◦ δ(x) = d(x, ∂�) denotes Euclidean distance of x ∈ � to ∂�.

◦ d K
� , dC

� and dC̃
� denote the Kobayashi, Carathéodory and inner-Carathéodory

distances on �.

◦ F K
� and FC

� denote the Kobayashi and Carathéodory infinitesimal metrics on �.

◦ If f : �1 → �2 is a smooth map between domains �1 and �2 in Cn , then
d f p : R2n → R2n denotes the derivative at p ∈ �1.

Finally, the letters C or c will be used to denote an arbitrary constant throughout
this article and which is subject to change, even within the limits of a given line,
unless otherwise stated.

2.4. An estimate for the distance to the boundary

We prove that C0-isometries approximately preserve the distance to the boundary.
This is needed for the convergence of Pinchuk rescalings in Section 3. For a domain
� and a point x ∈ �, δ(x) denotes the Euclidean distance δ(x) = d(x, ∂�). Our
proof uses the results and notations of [1] in a crucial way and we refer the reader
to it for further details.

We note that in the lemma below we do not need to assume that the isometry
has a C1-extension to the closure of the domain.

Lemma 2.2. Let �1 and �2 be strongly pseudoconvex domains in Cn and f :
�1 → �2 a C0 isometry of the Kobayashi on �1 and �2. There exist positive
constants A and B such that

B δ(x) ≤ δ( f (x)) ≤ A δ(x)

for all x ∈ �1. A similar statement holds for an isometry of the inner-Carathéodory
distance if we assume that ∂�1 and ∂�2 are C3 smooth.

Proof. Since � has a C2 boundary, given x ∈ � sufficiently close to the boundary,
there exists a unique point π(x) ∈ ∂� such that |x − π(x)| = δ(x). Extend the
domain of π to be all of �. Such an extension is not uniquely defined but any
extension will work for our purposes.



HOLOMORPHICITY OF ISOMETRIES 399

Following [1], define for any strongly pseudoconvex �, the function g : � × � →
R by

g(x, y) = 2 log

[
dH (π(x), π(y)) + max{h(x), h(y)}√

h(x)h(y)

]
,

where h(x) = √
δ(x) and dH is the Carnot-Carathéodory metric on ∂�.

The Box-Ball estimate (Proposition 3.1 of [1]) implies that the topology in-
duced by dH on ∂� agrees with the Euclidean topology. Hence, (∂�, dH ) is com-
pact and, in particular, has finite diameter, say D. This implies that

2 log

√
h(y)

h(x)
≤ g(x, y) ≤ 2 log

( D + S√
h(x)h(y)

)
where we have used max{h(x), h(y)} ≥ h(y) in the first inequality and where
S = supx∈� h(x). Hence

h(y)

h(x)
≤ eg(x,y) ≤ E

h(x)h(y)
. (2.1)

Now we consider the functions g1 and g2 associated to �1 and �2. By Corollary
1.3 of [1], there exists a constant C1 such that

g1(x, y) − C1 ≤ d K
�1

(x, y) ≤ g1(x, y) + C1 (2.2)

for all x , y in �1.
According to [2], such an estimate holds for the inner-Carathéodory distance

as well, if one assumes C3-regularity of the boundaries.
Combining (2.2) and (2.1) gives

A1
h(y)

h(x)
≤ e

d K
�1

(x,y) ≤ B1

h(x)h(y)
.

A similar inequality holds on �2 (with A2, etc). Fixing y ∈ �1, using d K
�1

(x, y) =
d K
�2

( f (x), f (y)), and comparing the inequalities on �1 and �2, we get the required
estimates. The proof for the inner-Carathéodory distance is the same.

An immediate corollary of Lemma 2.2 is that for C1-isometries which have C1-
extensions, the derivative of the boundary map preserves the horizontal distribution
of T . Note that necessarily f (∂�1) ⊂ ∂�2, by Lemma 2.2.

Lemma 2.3. Let f : �1 → �2 be a C1-isometry of strongly pseudoconvex do-
mains equipped with the Kobayashi metric. If f extends to a C1-map of �1, then

d f p (Hp(∂�1)) ⊂ H f (p) (∂�2),

for any p ∈ ∂�. This holds for an isometry of the inner-Carathéodory metric as
well if we assume that ∂�1 and ∂�2 are C3-smooth.
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Proof. By [17], there exists δ0 > 0 such that for any x ∈ �1 with δ(x) ≤ δ0 and
for all v = vH + vN ∈ Cn (where this decomposition is taken at π(x)), we have

|vN |2
8δ(x)2

+ Lπ(x)(vH )

4δ(x)
≤

(
F K

�1
(x, v)

)2 ≤ |vN |2
2δ(x)2

+ 4
Lπ(x)(vH )

δ(x)
. (2.3)

One has similar estimates for d fx (v) = d fx (v)H +d fx (v)N . Since f is an isometry
we have F K

�1
(x, v) = F K

�2
( f (x), d fx (v)). Now assume that v ∈ Hp(∂�1), i.e.,

v = vH . Comparing the estimates (corresponding to (2.3)) for v and d fx (v), we get

|d fx (v)N |2
8δ( f (x))2

+ Lπ( f (x))(d fx (v)H )

4δ( f (x))
≤ 4

Lπ(x)(vH )

δ(x)
. (2.4)

We can assume that Lπ(x)(w) ≤ c|w|2 for all w ∈ Hq(∂�1), q ∈ ∂�1. Combining
this with Lemma 2.2 and (2.4), we get

|d fx (v)N | ≤ C δ(x)|v|
for some uniform positive constant C . Letting x → p and using the continuity of
d f we obtain d f p(v)N = 0.

Remark: Once it known that δ(x) ≈ δ( f (x)) uniformly for all x ∈ �1, it follows
by well known arguments that f ∈ C1/2(�1). Indeed, from (2.3) and the fact that
f is an isometry we get

C
|d fx (v)|√
δ( f (x))

≤ F K
�2

( f (x), d fx (v)) = F K
�1

(x, v) ≤ |v|
δ(x)

for all tangent vectors v at x . Hence

|d fx (v)| ≤ C
|v|√
δ(x)

.

Integrating this along a polygonal path as in [22] yields

| f (p) − f (q)| ≤ C |p − q|1/2

uniformly for all p, q in �1.

3. A metric version of Pinchuk rescaling

Throughout this section, we will assume that the boundary of the domain under con-
sideration is C3-smooth when dealing with the inner-Carthéodory distance. Other-
wise we assume that ∂� is C2.
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Let p ∈ ∂�, and fix a sequence {pn} in � converging to p. It has been shown in
Lemma 2.2 that

d(pn, ∂�1) ≈ d( f (pn), ∂�2). (3.1)

In particular { f (pn)} will cluster only on ∂�2. By passing to a subsequence we can
assume that qn = f (pn) → q ∈ ∂�2. Fix a defining function ρ for ∂�1 that is
strongly plurisubharmonic and of class C2 in some neighbourhood of �1. Similarly
let ρ′ be such a function for �2. The following lemma in [23] will be vital for what
follows.

Lemma 3.1. Let � be a strongly pseudoconvex domain, ρ a defining function for
∂�, and p ∈ ∂�. Then there exists a neighbourhood U of p and a family of
biholomorphic mappings hζ : Cn → Cn depending continuously on ζ ∈ ∂� ∩ U
that satisfy the following:

(i) hζ (ζ ) = 0.

(ii) The defining function ρζ = ρ ◦ h−1
ζ of the domain �ζ := hζ (�) has the form

ρζ (z) = 2 Re (zn + Kζ (z)) + Hζ (z) + αζ (z)

where Kζ (z) = ∑n
i, j=1 ai j (ζ )zi z j , Hζ (z) = ∑n

i, j=1 ai j̄ (ζ )zi z̄ j and αζ (z) =
o(|z|2) with Kζ (z̃, 0) ≡ 0 and Hζ (z̃, 0) ≡ |z̃|2.

(iii) The mapping hζ takes the real normal to ∂� at ζ to the real normal {z̃ = yn =
0} to ∂�ζ at the origin.

To apply this lemma select ζk ∈ ∂�1, closest to pk and wk ∈ ∂�2 closest to
qk = f (pk). For k large, the choice of ζk and wk is unique since ∂�1 and ∂�2 are
sufficiently smooth. Moreover ζk → p and wk → q. Let hk := hζk and gk := gwk

be the biholomorphic mappings provided by the lemma above. Let

�k
1 := hk(�1), �k

2 := gk(�2) and fk := gk ◦ f ◦ h−1
k : �k

1 → �k
2.

Note that fk is also an isometry for the Kobayashi distance on �k
1 and �k

2.
Let Tk : Cn → Cn be the anisotropic dilatation map given by

Tk(z̃, zn) =
(

1√
δk

z̃,
1

δk
zn

)
and let

�̃k
1 := Tk(�

k
1), �̃k

2 := Tk(�
k
2) and �k := Tk ◦ fk ◦ T −1

k : �̃k
1 → �̃k

2.

Again �k is an isometry. Let us note that the explicit expression for �k is

�k(z) =
(

1√
δk

f̃k(
√

δk z̃, δk zn),
1

δk
f̂k(

√
δk z̃, δk zn)

)
.
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For notational convenience, let us denote the compositions of the rotations and the
scalings by

Hk := Tk ◦ hk and Ik := Tk ◦ gk ⇒ �k = Ik ◦ f ◦ Hk . (3.2)

Note that the defining functions for �̃k
1 and �̃k

2 are given by

ρ̃k(z) = 1√
δk

ρk(
√

δk z̃, δk zn), ρ̃′
k(w) = 1√

δk
ρk(

√
δkw̃, δkwn)

respectively.
The family of functions {hk} converges uniformly on compact subsets of Cn to

the identity mapping, as do their inverses h−1
k . Thus it follows that for k � 1

1

B
≤ d(hk(z), ∂�k

1)

d(z, ∂�1)
≤ B and

1

B
≤ d(gk(w), ∂�k

2)

d(w, ∂�2)
≤ B (3.3)

for some constant B independent of z and k.
Combining (3.1) and (3.3) shows that for k � 1

1

c
d(z, ∂�k

1) ≤ d( fk(z), ∂�k
2) ≤ c d(z, ∂�k

1) (3.4)

where c is independent of k, for k � 1 and z ∈ �k
1. Moreover, since ρ and ρ′ (and

hence ρk := ρζk = ρ ◦ h−1
k and ρ′

k := ρ′
wk

= ρ′ ◦ g−1
k ) are smooth, it follows that

there exists a uniform constant c > 0 such that

1

c
≤ d(z, ∂�k

1)

|ρk(z)| ≤ c and
1

c
≤ d(w, ∂�k

2)

|ρ′
k(w)| ≤ c (3.5)

for k � 1 and z ∈�k
1, w∈�k

2. Let δk =d(hk(pk), ∂�k
1) and γk = d(gk(qk), ∂�k

2).
Two observations can be made at this stage: first, for k � 1, hk(pk) =

(0, −δk), gk(qk) = (0, −γk) and fk(0, −δk) = (0, −γk) as follows from Lemma
3.1, and secondly (3.4) shows that

1

c
δk ≤ γk ≤ c δk (3.6)

for some c > 0.
It has been shown in [23] that the sequence of domains {�̃k

1} converges to the
unbounded realization of the unit ball, namely to

�z = {z ∈ C
n : 2 Re zn + |z̃|2 < 0}.

The convergence is in the sense of Hausdorff convergence of sets. Similarly {�̃k
2}

will converge to �w, the unbounded realization of the ball in w coordinates.
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Proposition 3.2. Let �1, �2 be smoothly bounded strongly pseudoconvex domains
in Cn. Suppose that f : �1 → �2 is a C0-isometry with respect to the Kobayashi
(respectively inner-Carathéodory) distances on �1 and �2. Define the sequence of
domains �̃k

1, �̃k
2 and mappings �k : �̃k

1 → �̃k
2. Then there exists a subsequence of

{�k} that converges uniformly on compact subsets of �z to a continuous mapping
� : �z → Cn.

Proof. The case when � is an isometry with respect to the Kobayashi distance will
be dealt with first. By construction �k(0, −1) = (0, −γk/δk) and (3.6) shows
that {�k(0, −1)} is bounded. The domain �z can be exhausted by an increasing
union {Si } of relatively compact convex domains each containing (0, −1). Fix a
pair Si0 � Si0+1 and write S1 = Si0 and S2 = Si0+1 for brevity. Since �̃k

1 converges
to �z it follows that S1 � S2 � �̃k

1 for all k � 1. It will suffice to show that {�k}
restricted to S1 is uniformly bounded and equicontinuous. Fix s1, s2 in S1. The
following inequalities hold for large k:

d K
�̃k

2
(�k(s1), �k(s2)) = d K

�̃k
1
(s1, s2) ≤ d K

S2
(s1, s2) ≤ c|s1 − s2| (3.7)

for c > 0 independent of k. Indeed the equality holds for all k since �k is an
isometry and the inequalities are a result of the following observations: first, the
inclusion S2 ↪→ �̃k

1 is distance decreasing for the Kobayashi distance and second,
since S2 is convex, the infinitesimal Kobayashi metric F K

S2
(z, v) satisfies

F K
S2

(z, v) ≤ |v|
δv(z)

(3.8)

where z ∈ S2, v is a tangent vector at z and δv(z) is the distance of z to ∂S2 in the
direction along v. Now joining s1 and s2 by a straight line path γ (t) and integrating
(3.8) along γ (t) yields the last inequality in (3.7).

To estimate d K
�̃k

2
(�k(s1), �k(s2)) note from (3.2) that

d K
�̃k

2
(�k(s1), �k(s2)) = d K

�2
( f ◦ H−1

k (s1), f ◦ H−1
k (s2)) (3.9)

since Ik is an isometry. Since f is continuous at p ∈ ∂�1, choose neighborhoods
U1, U2 of p, q = f (p) respectively so that f (U1 ∩�1) ⊂ U2 ∩�2. Note that pn,

and ζn as chosen earlier lie in U1 ∩�1 eventually. For k large, H−1
k (S1) ⊂ U1 ∩�1

and hence both f ◦ H−1
k (s1) and f ◦ H−1

k (s2) lie in U2 ∩ �2. It is well known
that the Kobayashi distance can be localized near strongly pseudoconvex points in
the sense that for every choice of U2, there is a smaller neighborhood p ∈ U3, U3
relatively compact in U2, and c > 0 such that

c d K
U2∩�2

(x, y) ≤ d K
�2

(x, y) (3.10)

for all x, y ∈ U3 ∩ �2. We apply this to x = f ◦ H−1
k (s1) and y = f ◦ H−1

k (s2),
both of which belong to U3 ∩ �2 for large k, by shrinking U1 if necessary.



404 HARISH SESHADRI AND KAUSHAL VERMA

Moreover, thanks to the strong pseudoconvexity of ∂�2 near q, it is possible to
choose U2 small enough so that for k � 1,

gk(U2 ∩ �2) ⊂ {w ∈ C
n : |wn + R|2 + |w̃|2 < R2} ⊂ �̃

where � := {w ∈ Cn : 2 R (Re wn) < −|w̃|2} for some fixed R > 1.
Note that �̃ is invariant under the dilatation Tk for all k and moreover �̃ is

biholomorphic to Bn . Thus, Tk ◦ gk(U2 ∩ �2) ⊂ �̃ and hence �k(s1), �k(s2) both
lie in �̃ for k large. From (3.9) and (3.10) it follows that

c d K
�̃

(�k(s1), �k(s2)) ≤ d K
�̃k

2
(�k(s1), �k(s2)) (3.11)

for k large. Combining (3.7) and (3.11) gives

d K
�̃

(�k(s1), �k(s2)) ≤ c |s1 − s2| (3.12)

for s1, s2 ∈ S1 and k � 1.
Let ψ : �̃ → Bn be a biholomorphic mapping. To show that {�k(S1)} is

uniformly bounded, choose s1 ∈ S1 arbitrarily and s2 = (0, −1). Then (3.11)
shows that

d K
�̃

(�k(s1), �k(0, −1)) ≤ c |s1 − s2| < ∞.

Since {�k(0, −1)} is bounded and Bn (and hence �̃) is complete in the Kobayashi
distance, it follows that {�k(s1)} is bounded.

To show that {�k} restricted to S1 is equicontinuous observe that the Kobayashi
distance in Bn between ψ ◦ �k(s1) and ψ ◦ �k(s2) equals

d K
�̃

(�k(s1), �k(s2)) ≤ c |s1 − s2|.
Using the explicit formula for the Kobayashi distance between two points in Bn ,
this gives ∣∣∣ ψ ◦ �k(s1) − ψ ◦ �k(s2)

1 − ψ ◦ �k(s1) ψ ◦ �k(s2)

∣∣∣ ≤ exp (2 c |s1 − s2|) − 1

exp (2 c |s1 − s2|) + 1
.

Since {�k(S1)} is relatively compact in �̃ for k � 1, it follows that so is {ψ ◦
�k(S1)} in Bn . Let {ψ ◦ �k(S1)} ⊂ G � Bn . Hence

|1 − ψ ◦ �k(s1)ψ ◦ �k(s2)| ≥ c > 0

for k large and this shows that

|ψ ◦ �k(s1) − ψ ◦ �k(s2)| ≤ exp (c |s1 − s2|) − 1

exp (c |s1 − s2|) + 1
≤ c |s1 − s2|

This shows that {�k} is equicontinuous on S1 and hence there is a subsequence of
{�k} that converges uniformly on compact subsets of �z to a continuous mapping
� : �z → Cn .



HOLOMORPHICITY OF ISOMETRIES 405

It may be observed that the same proof works when f : �1 → �2 is an isometry
in the inner-Carathéodory distance on the domains. Indeed, the process of defining
the scaling does not depend on the intrinsic metric that is used as a distance func-
tion. Moreover the Carathéodory distance enjoys the same functorial properties as
the Kobayashi distance and even the quantitative bounds used in (3.8) and (3.10)
remain the same. Hence the same proof works verbatim for the inner-Carathéodory
distance.

Proposition 3.3. Let f : �1 → �2 be an isometry in the Kobayashi distance on
smoothly bounded strongly pseudoconvex domains �1, �2 in Cn. Then the limit
map map � : �z → Cn constructed above satisfies:

(i) �(�z) ⊂ �w

(ii) � : �z → �w is a C0-isometry for the Kobayashi distance.

The same conclusions hold when f : �1 → �2 is an isometry in the inner-
Carathéodory distance on the domains, provided the boundaries are at least C3

smooth . In particular � : �z → �w is an isometry in the inner-Carathéodory
distance (which equals the Kobayashi distance) on �z and �w.

Proof. Let �k : �̃k
1 → �̃k

2 be the sequence of scaled mappings as before. Without
loss of generality we assume that �k → � uniformly on compact subsets of �z .
The defining equations for �̃k

2 and �̃k
1 are respectively given by

ρ̃′
k(w) = 1√

δk
ρk(

√
δkw̃, δkwn) , ρ̃k(z) = 1√

δk
ρk(

√
δk z̃, δk zn).

It is shown in [23] that these equations simplify as

ρ̃′
k(w) = 2 Re wn + |w̃|2 + B̃k(w) , ρ̃k(w) = 2 Re zn + |z̃|2 + Ãk(w)

in neighborhoods of the origin where

|B̃k(w)| ≤ |w|2(c√δk + η(δk |w|2)) , | Ãk(z)| ≤ |z|2(c√δk + η(δk |z|2))
with η(t) = o(1) as t → 0 and c > 0 is uniform for all k large.

Fix a compact subset of �z , say S. Then for k � 1 and z ∈ S

2 Re(�k)n(z) + |�̃k(z)|2 + B̃k(�k(z)) < 0 (3.13)

where
|B̃k(�k(z))| ≤ |�k(z)|2(c

√
δk + η(δk |�k(z)|2)).

By the previous proposition {�k} is uniformly bounded on S and hence δk |�k(z)|2
converges to 0, with the result that η(δk |�k(z)|2)) → 0 as k → ∞. Passing to the
limit as k → ∞ in (3.13) shows that

2 Re �n(z) + |�̃(z)|2 ≤ 0
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which means exactly that �(C) ⊂ �w. Since S ⊂ �z is arbitrary it follows that
� : �z → �w. If � were known to be holomorphic it would follow at once by the
maximum principle that � : �z → �w. However � is known to be just continuous.

Let D ⊂ �z be the set of all points z such that �(z) ∈ �w. D is non-
empty since (0, −1) ∈ D as can be seen from (3.6) and the fact that �k(0, −1) =
(0, −γk/δk). Since � is continuous, D is open in �z .

Claim. It suffices to show that

d K
�z

(z1, z2) = d K
�w

(�(z1), �(z2)) (3.14)

for z1, z2 ∈ D. Indeed, if z0 ∈ ∂ D ∩ �z , choose a sequence z j ∈ D that converges
to z0. If the claim were true, then

d K
�z

(z j , (0, −1)) = d K
�w

(�(z j ), �(0, −1)) (3.15)

for all j . Since z0 ∈ ∂ D, �(z j ) → ∂�w and as �w is complete in the Kobayashi
distance, the right side in (3.15) becomes unbounded. However the left side remains
bounded, again because of the completeness of �z . This contradiction would show
that D = �z , knowing which the claim would prove assertion (i i) as well.

It is already known that

d K
�̃k

1
(z1, z2) = d K

�̃k
2
(�(z1), �(z2))

for k � 1. To prove the claim it suffices to take limits on both sides in the equal-
ity above. This is an issue of the stability of the Kobayashi distance, to under-
stand which we need to study the behaviour of the infinitesimal Kobayashi metric
��̃k

1
(z, v) as k → ∞. To do this, we will use ideas from [13]. Once this is done,

an integration argument will yield information about the global metric K�̃k
1
.

Step 1. It will be shown that

lim
k→∞ F K

�̃k
1
(a, v) = F K

�z
(a, v) (3.16)

for (a, v) ∈ �z × Cn . Moreover, the convergence is uniform on compact subsets of
�z × Cn .

Let S ⊂ �z and G ⊂ Cn be compact and suppose that the desired convergence
does not occur. Then there are points ak ∈ S converging to a ∈ S and vectors
vk ∈ G converging to v ∈ G such that

0 < ε0 < |F K
�̃k

1
(a j , v j ) − F K

�z
(a j , v j )|

for j large. This inequality holds for a subsequence only, which will again be de-
noted by the same symbols. Further, since the infinitesimal metric is homogeneous
of degree one in the vector variable , we can assume that |v j | = 1 for all j . It was
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proved in [13] that F K
�z

is jointly continuous in (z, v). This was a consequence of
the fact that �z is taut. Thus

0 < ε0/2 < |F K
�̃k

1
(a j , v j ) − F K

�z
(a, v)|.

The tautness of �z implies, via a normal families argument, that 0 < F K
�z

(a, v) <

∞ and there exists a holomorphic extremal disc φ : � → �z that by definition
satisfies φ(0) = a, φ′(0) = µv where µ > 0 and F K

� (a, v) = 1/µ.
Fix δ ∈ (0, 1) and define the holomorphic maps φk : � → Cn by

φk(ξ) = φ((1 − δ)ξ) + (ak − a) + µ(1 − δ)ξ(vk − v).

Observe that the image φ((1 − δ)ξ) is compact in �z and since ak → a, vk → v it
follows that φk : � → �̃k

1 for k large. Also, φk(0) = φ(0) + ak − a = ak and that
φ′

k(0) = (1 − δ)φ′(0) + µ(1 − δ)(vk − v) = µ(1 − δ)(v + vk − v) = µ(1 − δ)vk .
By the definition of the infinitesimal metric it follows that

F�̃k
1
(ak, vk) ≤ 1

µ(1 − δ)
= F K

�z
(a, v)

1 − δ

for j � 1. Letting δ → 0+ it follows that

lim sup
k→∞

F K
�̃k

1
(ak, vk) ≥ F K

�z
(a, v). (3.17)

Conversely, fix ε > 0 arbitrarily small. By definition, there are holomorphic map-
pings φk : � → �̃k

1 satisfying φk(0) = ak, φ′
k(0) = µkvk where µk > 0 and

F K
�̃k

1
(ak, vk) ≥ 1

µk
− ε. (3.18)

The sequence {φk} has a subsequence that converges to a holomorphic mapping
φ : � → �z uniformly on compact subsets of �. Indeed consider the disc �r of
radius r ∈ (0, 1). The mappings H−1

k ◦φk : � → �1 and H−1
k ◦φk(0) → p ∈ ∂�1.

Fix a ball Bp(δ) of radius δ around p, with δ small enough. Since p ∈ ∂�1 is a
plurisubharmonic peak point, Proposition 5.1 in [27] (see [3] also, where this
phenomenon was aptly termed the attraction property of analytic discs) shows that
for the value of r ∈ (0, 1) fixed earlier, there exists η > 0, independent of φk such
that H−1

k ◦ φk(�r ) ⊂ Bp(δ). If δ is small enough, then there exists R > 1 large
enough so that

hk(Bp(δ) ∩ �1) ⊂ {z ∈ C
n : |zn + R|2 + |z̃|2 < R2} ⊂ �.

where (as in Proposition 3.2)

� = {z ∈ C
n : 2 R (Re zn) < −|z̃|2}.
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Again, we note that � is invariant under Tk and that � ∼= Bn . Hence φk(�r ) ⊂ �

for k large and this exactly means that

2 R (Re (φk)n(z)) + |φ̃k(z)|2 < 0

for z ∈ �r .
It follows that {(φk)n(z)} and hence each component of φ̃k(z), forms a normal

family on �r . Since r ∈ (0, 1) was arbitrary, the usual diagonal subsequence yields
a holomorphic mapping φ : � → Cn or φ ≡ ∞ on �. But it is not possible that
φ ≡ ∞ on � since φ(0) → a.

It remains to show that φ : � → �z . For this note that �̃k
1 are defined by

ρ̃k(w) = 2 Re zn + |z̃|2 + Ãk(w), (3.19)

where
| Ãk(z)| ≤ |z|2(c√δk + η(δk |z|2))

Thus for ζ ∈ �r , r ∈ (0, 1),

2 R (Re (φk)n(z) + |φ̃k(z)|2 + Ãk(φk(z)) < 0

where
Ãk(φk(z)) ≤ |φk(z)|2(c

√
δk + η(δk |φk(z)|2))

as k → ∞. Passing to the limit in (3.19) shows that

2 R (Re (φk)n(z)) + |φ̃k(z)|2 ≤ 0

for z ∈ �r , which exactly means that φ(�r ) ⊂ �̄z . Since r ∈ (0, 1) was arbitrary,
it follows that φ(�) ⊂ �̄z and the maximum principle shows that φ(�) ⊂ �z .

Note that φ(0) = a and φ′(0) = lim k→∞ φ′
k(0) = lim k→∞ µkvk = µv for

some µ > 0. It follows from (3.18) that

lim inf
k→∞ F K

�̃k
1
(ak, vk) ≥ F K

�z
(a, v) − ε. (3.20)

Combining (3.18) and (3.20) shows that

lim
k→∞ F K

�̃k
1
(ak, vk) = F K

�z
(a, v)

which contradicts the assumption made and proves (3.16).

Step 2. The goal will now be to integrate (3.16) to recover the behaviour of the
global metric, i.e., the distance function.

Let γ : [0, 1] → �z be a C1 curve such that γ (0) = z1 and γ (0) = z2 and

d K
�k

(z1, z2) =
∫ 1

0
F K

�z
(γ, γ ′)d t.
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Since γ � �z, γ � �̃k
1 for k large. By Step 1, it follows that∫ 1

0
F K

�̃k
1
(γ, γ ′)d t ≤

∫ 1

0
F K

�z
(γ, γ ′)d t + ε = d K

�z
(z1, z2) + ε

By definition of K�̃k
1
(z1, z2) it follows that

d K
�̃k

1
(z1, z2) ≤

∫ 1

0
F K

�̃k
1
(γ, γ ′)d t ≤ d K

�z
(z1, z2) + ε.

Thus
lim sup

k→∞
d K
�̃k

1
(z1, z2) ≤ d K

�z
(z1, z2) (3.21)

Conversely since z1,z2 ∈ D ⊂�z , it follows that z1, z2 ∈�̃k
1 for k large. Fix ε>0 and

let Bp(η1) be a small enough neighbourhood of p ∈ ∂�. Choose η2 < η1 so that

F K
�1

(z, v) ≤ F K
Bp(η1)∩�1

(z, v) ≤ (1 + ε)F K
�1

(z, v). (3.22)

for z ∈ Bp(η2)∩�1 and v a tangent vector at z. This is possible by the localization
property of the Kobayashi metric near strongly pseudoconvex points.

If k is sufficiently large, H−1
k (z1) and H−1

k (z1) both belong to Bp(η2) ∩ �1.
If η1 is small enough, Bp(η1) ∩ �1 is strictly convex and it follows from Lempert’s
work that there exist mk > 1 and holomorphic mappings

φk : �mk → Bp(η1) ∩ �1,

such that φk(0) = H−1
k (z1), φk(1) = H−1

k (z2) and

d K
Bp(η1)∩�1

(H−1
k (z1), H−1

k (z2)) = ρ�mk
(0, 1)

=
∫ 1

0
F K

Bp(η1)∩�1
(φk(t), φ

′
k(t))d t.

(3.23)

Integrating (3.22) and using the fact that Hk are biholomorphisms and hence
Kobayashi isometries, it follows that

d K
Hk(Bp(η1)∩�1)

(z1, z2) ≤ (1 + ε)d K
�̃k

1
(z1, z2).

Hence (3.23) shows that

1

2
log

(mk + 1

mk − 1

)
= ρ�mk

(0, 1) = d K
Bp(η1)∩�1

(H−1
k (z1), H−1

k (z2))

= d K
Hk(Bp(η1)∩�1)

(z1, z2) ≤ (1 + ε)d K
�̃k

1
(z1, z2).
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But
d K
�̃k

1
(z1, z2) ≤ d K

�z
(z1, z2) + ε < ∞

and hence mk > 1+δ for some uniform δ > 0 for all k � 1. Thus the holomorphic
mappings σk := Tk ◦hk ◦φk : �1+δ → Tk ◦hk(U ∩�1) ⊂ �̃k

1 are well-defined and
satisfy σk(0) = z1 and σk(1) = z2. Now exactly the same arguments that were used
to establish the lower semi-continuity of the infinitesimal metric in Step 1 show that
{σk} is a normal family and σk → σ : �1+δ → �z uniformly on compact subsets
of �1+δ . Again using (3.22) and (3.23) we get∫ 1

0
F K

�̃k
1
(σk, σ

′
k)d t ≤

∫ 1

0
F K

Hk(Bp(η1)∩�1)
(σk, σ

′
k)d t = d K

Hk(Bp(η1)∩�1)
(z1, z2)

≤ (1 + ε)d K
�̃k

1
(z1, z2).

Since σk → σ and σ ′
k → σ ′ uniformly on [0, 1], Step 1 shows that∫ 1

0
F K

�z
(σ, σ ′)d t ≤

∫ 1

0
F K

�̃k
1
(σk, σ

′
k)d t + ε ≤ d K

�z
(z1, z2) + Cε

for all large k.
It remains to note that since σ(t), 0 ≤ t ≤ 1 joins z1, z2 it follows that

d K
�z

(z1, z2) ≤
∫ 1

0
F K

�̃k
1
(σk, σ

′
k)d t ≤ d K

�̃k
1
(z1, z2) + Cε. (3.24)

Combining (3.21) and (3.24), we see that

d K
�̃k

1
(z1, z2) → d K

�z
(z1, z2)

for all z1, z2 ∈ D. Exactly the same arguments show that it is possible to pass to
the limit on the right side of (3.14). The claim made in (3.14) follows.

To complete the proof of the proposition for the Kobayashi distance, it remains
to show that � : �z → �w is surjective. This follows by repeating the argument of
the previous proposition for f −1 : �2 → �1 and considering the scaled inverses,
i.e. �k = �−1

k : �̃k
2 → �̃k

1. This family will converge to a continuous map
� : �w → Cn uniformly on compact subsets of �w. The arguments of this
proposition will then show that � maps �w to �z . Finally observe that for w

in a fixed compact subset of �w,

|w − � ◦ �(w)| = |�k ◦ �k(w) − � ◦ �(w)|
≤ |�k ◦ �k(w) − � ◦ �k(w)| + |� ◦ �k(w) − � ◦ �(w)| → 0

as k → ∞. Thus � ◦ � = id = � ◦ �.
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We now deal with the case when f : �1 → �2 is an isometry for the inner-
Carthéodory distance on �1 and �2.

One possibility is to first show that

lim
k→∞ dC

�̃k
1
(z1, z2) = dC

�z
(z1, z2)

for z1, z2 ∈ �z . Knowing this, the following inequalities hold:

dC
�z

(z1, z2) = lim
k→∞ dC

�̃k
1
(z1, z2) ≤ lim

k→∞ dC̃
�̃k

1
(z1, z2)

≤ lim
k→∞ d K

�̃k
1
(z1, z2) = d K

�z
(z1, z2).

Since dC
�z

= dC̃
�z

= d K
�z

, it would follow that

dC̃
�z

(z1, z2) = lim
k→∞ dC̃

�̃k
1
(z1, z2).

Hence it suffices to show the stability of the Carathéodory distance.
As before let z1, z2 ∈ S � �z . For large k, z1, z2 ∈ �̃k

1. Let φk : �̃k
1 → � be

holomorphic maps such that φk(z1) = 0 and

dC
�̃k

1
(z1, z2) = ρ(0, φk(z2)).

The family {φk} is uniformly bounded above and since �̃k
1 → �z , all mappings φk ,

k ≥ k0, are defined on the compact set S. Thus there is a subsequence which will
still be denoted by φk so that φk → φ : �z → � and φ(z1) = 0. If |φ(z0)| = 1 for
some z0 ∈ �z , then |φ(z)| ≡ 1 by the maximum principle. Thus φ : �z → � and
in particular ρ(0, φk(z2)) → ρ(0, φ(z2)). Therefore dC

�̃k
1
(z1, z2) ≤ ρ(0, φ(z2)) +

ε ≤ dC
�z

(z1, z2) + ε, which shows that

lim sup
k→∞

dC
�̃k

1
(z1, z2) ≤ dC

�z
(z1, z2). (3.25)

Conversely, working with the same subsequence that was extracted above, we have:

dC
�z

(z1, z2) ≤ d K
�z

(z1, z2) ≤ dC
�̃k

1
(z1, z2) + ε

for k large. But
d K
�̃k

1
(z1, z2) = d K

�1
(H−1

k (z1), H−1
k (z2))

and since H−1
k (z1), H−1

k (z2) are both close to p, for k large, it follows that

d K
�1

(H−1
k (z1), H−1

k (z2)) ≤ d K
Bp(η1)∩�1

(H−1
k (z1), H−1

k (z2)) + ε



412 HARISH SESHADRI AND KAUSHAL VERMA

where Bp(η1) is a small enough neighborhood of p. Since Bp(η1) ∩ �1 is con-
vex Lempert’s work shows that the Kobayashi and Carthéodory distances coincide.
Combining the aforementioned observation, we get

dC
�z

(z1, z2) ≤ dC
Bp(η1)∩�1

(H−1
k (z1), H−1

k (z2)) + 2ε (3.26)

To conclude, it is known (see [23]) that the Carathéodory distance can be localised
near strongly pseudoconvex points , exactly like the Kobayashi distance. hence

dC
Bp(η1)∩�1

(H−1
k (z1), H−1

k (z2)) ≤ (1 + ε) dC
�1

(H−1
k (z1), H−1

k (z2)) (3.27)

= (1 + ε) dC
�̃k

1
(z1, z2).

With this (3.26) becomes

dC
�z

(z1, z2) ≤ (1 + ε)dC
�̃k

1
(z1, z2) + 2ε.

Since dC
�̃k

1
(z1, z2) are uniformly bounded by (3.25) it follows that

dC
�z

(z1, z2) ≤ dC
�̃k

1
(z1, z2) + Cε (3.28)

combining (3.25) and (3.28), we see that

lim
k→∞ dC

�̃k
1
(z1, z2) = dC

�z
(z1, z2).

Hence the claim made in (3.14) also holds for the inner-Carathéodory metric. The
concluding arguments remain the same in this case as well. This completes the
proof of the proposition.

Since the Kobayashi and Caratheodory distances coincide with a constant mul-
tiple of the Bergman metric on �z and �w, it follows from [12] that the limit map
� : �z → �w is (anti)-biholomorphic.

4. The boundary map is CR/anti-CR

We prove Theorem 1.1 in this section. Throughout, f : �1 → �2 will denote a C1-
isometry of the Kobayashi or inner-Carathéodory metrics which has a C1-extension
to �1.

Fix p ∈ ∂�1. For the rest of this section we assume that p = f (p) = 0 and
that the real normals to �1 and �2 at p and f (p) are given by {z̃ = Im zn = 0} and
{w̃ = Im wn = 0}. This can be achieved by composing f with transformations of
the type in Lemma 3.1.
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Fix a sequence δk → 0 and define xk ∈ �1 by xk = (0̃, −δk). Then xk → p as
k → ∞. Because of our choice of xk , in the notation of Section 3, the map hk = id.

Recall that fk = gk ◦ f and �k = Tk ◦ fk ◦ T −1
k . More explicitly

�k(z) =
(

1√
δk

f̃k(
√

δk z̃, δk zn),
1

δk
( fk)n(

√
δk z̃, δk zn)

)

Lemma 4.1. For any α ∈ C such that Re α < 0, | f̃k(0, δkα)| = O(δk) as k → ∞.

Proof. Let m be an upper bound for |d f | on �1. The condition on α just ensures
that (0, δkα) lies in �k

1, which is the domain of fk .

Now, noting that f̃k(xk) = 0 and |ṽ| ≤ |v| for any v ∈ Cn , we have

| f̃k(0, δkα)| = | f̃k(xk) − f̃k(0, δkα)| ≤ | fk(xk) − fk(0, δkα)|
≤ C | f (xk) − f (0, δkα)| ≤ Cm|xk − (0, δkα)|
= Cm|α + 1|δk

since xk = (0, −δk). The second inequality above can be explained as follows:
First, gk → id in C∞ on compact subsets of Cn . Hence on any compact set which
contains 0, there is a constant C such that |dgk | ≤ C for large k. Then an application
of the mean-value inequality completes the argument.

The next lemma provides the crucial link between the limit of the re-scaled isome-
tries and the derivative of the boundary map. We clarify the notation used in the
statement and proof: First, even when we use complex notation, all quantities will
be regarded as entities on real Euclidean space. In particular Cn is identified with
R2n by z = (z1, . . . , zn) = (x1 + √−1x2, . . . , x2n−1 + √−1x2n) ≡ (x1, . . . , x2n).
Second, by the normalizations made at the beginning of this section we note that,
at p, the decomposition Tp�1 = Cn = Hp(∂�1) ⊕ Hp(∂�1)

⊥ coincides with
Cn = Cn−1 ⊕ C. Hence, by an abuse of notation, for v ∈ Tp�1, if v = vH + vN
then v = (vH , vN ). Similar remarks hold for f (p) and �2.

Next, by Proposition 3.3, a subsequence of {�k} converges to a (anti)-hol-
omorphic automorphism � : �z → �w. For the statement of the lemma it helps to
regard �z and �w as subsets of Tp�1 and T f (p)�2 respectively.

Lemma 4.2. With notation as above, for any z =(z̃, zn) ∈ �z , we have d̃ f p(z̃, 0)=
d f̃ p(z̃, 0) = �̃(z).

Proof. The first equality is clear from the definitions. As for the second, consider
any map r : Cn → Cn−1 with r = (r1, . . . , rn−1). Given δ and a ∈ C, we write

1√
δ

r(
√

δz̃, δzn) = r(
√

δz̃, δzn) − r(0, δzn)√
δ

+ r(0, δzn)√
δ

.
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By using the mean value theorem for one-variable functions repeatedly, we can
rewrite the above equation as

1√
δ

r(
√

δz̃, δzn) = N z̃ + r(0, δzn)√
δ

. (4.1)

Here N is a real matrices of size (2n −2)× (2n −2) with entries Ni j = ∂ri
∂x j

(ξi j (δ)).

Also, z̃ is regarded as a column vector of size (2n − 2) × 1. The entries of ξi j (δ) lie
between the entries of (0, δzn) and (

√
δz̃, δzn).

Now apply this to r = f̃k and δ = δk and let k → ∞. The only point to be noted is
that since (z̃, zn) ∈ �z by hypothesis, we have that (

√
δk z̃, δk zn) and (0, δk zn) lie

in �k
1 for large k. Since �k

1 is the domain of definition of fk , the above equations
make sense.

As k → ∞ in (4.1), the second term on the right-hand side goes to zero
by Lemma 4.1. Since {gk} converges to the identity map as k → ∞, we have
∂( f̃k)i
∂x j

(ξ k
i j (δk)) → ∂ f̃i

∂x j
(0) by the continuity assumption of d f on �1. Hence the first

term converges to d f̃ p(z̃, 0).
To complete the proof, we observe that since �k → �, 1√

δk
f̃k(

√
δk z̃, δk zn) →

�̃(z).

We proceed with the proof of Theorem 1.1. Recall that if �1 and �2 are
domains with smooth boundaries in Cn , a C1 map φ : ∂�1 → ∂�2 is said to be CR
if, for every p ∈ ∂�1, the following two conditions are satisfied

dφp(Hp(∂�1)) ⊂ Hφ(p)(∂�2)

and
dφp ◦ J1 = J2 ◦ dφp

where J1 and J2 are the almost complex structures on Hp(∂�1) and Hφ(p)(∂�2).
Similarly, an anti-CR map satisfies dφp(Hp(∂�1)) ⊂ Hφ(p)(∂�2) and dφp ◦ J1 =
−J2 ◦ dφp for every p ∈ ∂�1.

In our case, d f satisfies the first condition by Lemma 2.3. We claim the second
condition is satisfied due to Lemma 4.2. It follows from this lemma that the map
T : Bn−1 → Cn−1 given by T (z̃) = �̃(z̃, −1) is the restriction of the R-linear map
d̃ f p : Cn−1 → Cn−1. On the other hand, �̃ is holomorphic or anti-holomorphic
(since � is so). Combining these two observations, it follows that T is actually the
restriction of a C-linear map. Hence,

�̃(J1(v), −1) = ±J2�̃(v,−1), (4.2)

for any v ∈ Bn−1 and where J1, J2 denote the almost-complex structures on
Hp(∂�1) and H�(p)(∂�2) respectively (note that we have used the identification
of the horizontal subspaces with Cn−1).
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This implies that d f p is actually a C-linear or conjugate linear map on Cn−1 =
Hp(∂�1). More explicitly, let v ∈ Hp(∂�1). By scaling v by some constant
α > 0, we can assume that (αv, −1) ∈ �z . By Lemmas 4.2 and 2.3, we have

d f p(αv, 0) = (
�̃(αv, −1), 0

)
.

Using the C-linearity/conjugate-linearity of � as in (4.2), we have

d f p
(
J1(αv), 0

) = (
�̃(J1(αv), −1), 0

) = ±(
J2�̃(αv, −1), 0

) = ±J2d f p(αv, 0).

Hence we conclude that the boundary map is CR/anti-CR.
Now we prove that d f p : Tp∂�1 → T f (P)∂�2 is an isomorphism. First,

note that d f p|Hp(∂�1) : Hp(∂�1) → H f (p)(∂�2) is invertible. To see this, let
Hz := �z ∩ {(0, zn) : zn ∈ C}. Then �(Hz) ⊂ Hw by Lemma 4.2. On the
other hand, it can be checked that the induced Riemannian metrics on Hz and Hw

are just the hyperbolic metrics. From the completeness of these metrics it follows
that �(Hz) = Hw. But if d f p is not injective on Hp(∂�1), then there would
be a (v, 0) ∈ Hp(∂�1) such that d f p(v, 0) = 0. By scaling v we can assume
that (v, −1) ∈ �z and use Lemma 4.2 to conclude that �(v, −1) ∈ Hw. This
contradicts �−1(Hw) = Hz .

Next, as in the proof of Lemma 2.3, Equation (2.3) shows that d f p(v)N �= 0
for any v ∈ Hp(∂�1)

⊥. Hence d f p : Tp∂�1 → T f (p)∂�2 is invertible and f is a
CR/anti-CR diffeomorphism.

To conclude that �1 and �2 are biholomorphic we proceed as follows: Note
that the connectedness of ∂�1 implies that f : ∂�1 → ∂�2 is either CR or anti-
CR everywhere. Let us assume that f is CR everywhere, the other case being
exactly similar. It follows that there is a neighborhood U1 of ∂�1 and a holomorphic
mapping F : U1 ∩ �1 → �2 such that F is C1-smooth upto ∂�1 and F = f on
∂�1. By Hartogs’ theorem, F extends to a holomorphic mapping F : �1 → �2.
Similarly f −1 has a holomorphic extension, say G : �2 → �1, which agrees with
f −1 on ∂�2. Since f ◦ f −1 = F ◦ G = id on ∂�2, the uniqueness theorem of
[21] forces F ◦ G = id on �2 and likewise G ◦ F = id on �1. Thus �1 and �2
are biholomorphic. �
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[29] J. P. VIGUÉ, Caractérisation des automorphismes analytiques d’un domaine convexe

borné, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 101–104.



HOLOMORPHICITY OF ISOMETRIES 417

[30] S. WEBSTER, On the reflection principle in several complex variables, Proc. Amer. Math.
Soc. 71 (1978), 26–28.

[31] B. WONG, Characterization of the unit ball in C
n by its automorphism group, Invent. Math.

41 (1977), 253–257.
[32] J. Y. YU, Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly

pseudoconvex domains, Trans. Amer. Math. Soc. 347 (1995), 587–614.

Department of mathematics
Indian Institute of Science
Bangalore 560012, India
harish@math.iisc.ernet.in

Department of Mathematics
Indian Institute of Science
Bangalore 560012, India
kverma@math.iisc.ernet.in


