

Well-posedness results for hyperbolic operators with coefficients oscillating in time

FERRUCCIO COLOMBINI, DANIELE DEL SANTO AND FRANCESCO FANELLI

Abstract. In the present paper, we consider second-order strictly hyperbolic linear operators of the form $Lu = \partial_t^2 u - \operatorname{div}(A(t, x)\nabla u)$, for $(t, x) \in [0, T] \times \mathbb{R}^n$. We assume the coefficients of the matrix $A = A(t, x)$ to be smooth in time on $[0, T] \times \mathbb{R}^n$, but oscillating when $t \rightarrow 0^+$; they match instead minimal regularity assumptions (either Lipschitz or log-Lipschitz regularity conditions) with respect to the space variable.

Correspondingly, we prove well-posedness results for the Cauchy problem related to L , either with no loss of derivatives (in the Lipschitz case) or with a finite loss of derivatives, which is linearly increasing in time (in the log-Lipschitz case).

Mathematics Subject Classification (2020): 35L10 (primary); 35B65, 35B30, 35L15 (secondary).