

Periodic striped configurations in the large volume limit

SARA DANERI AND ERIS RUNA

Abstract. We show striped pattern formation in the large-volume limit for a class of generalized antiferromagnetic local/nonlocal interaction functionals in general dimension previously considered in [10, 12, 20] and in [14, 17] in the discrete setting. In such a model, the relative strength between the short-range attractive term favouring pure phases and the long-range repulsive term favouring oscillations is modulated by a parameter τ . For $\tau < 0$, the minimizers are trivial uniform states. It is conjectured that for all dimensions $d \geq 2$ there exists $0 < \bar{\tau} \ll 1$ such that for all $0 < \tau \leq \bar{\tau}$ and for all $L > 0$ minimizers on periodic boxes of size L are striped/lamellar patterns. In [10] we give a partial proof of the above conjecture for $L = 2kh_\tau^*$, where $k \in \mathbb{N}$ and h_τ^* is the optimal period of stripes for a given $0 < \tau \leq \bar{\tau}$. The purpose of this paper is to show the validity of the conjecture in its full generality, namely showing pattern formation in the large-volume limit on boxes of arbitrary size L .

Mathematics Subject Classification (2020): 49Q20 (primary); 49S05 (secondary).