

# On Shafarevich–Tate groups and analytic ranks in families of modular forms, I. Hida families

STEFANO VIGNI

*A Olga, Pietro e Michele*

**Abstract.** This is the first article in a two-part project whose aim is to study algebraic and analytic ranks in  $p$ -adic families of modular forms. Let  $f$  be a newform of weight 2, square-free level and trivial character, let  $A_f$  be the Abelian variety attached to  $f$  and for every good ordinary prime  $p$  for  $f$  let  $f^{(p)}$  be the  $p$ -adic Hida family through  $f$ . We prove that, for all but finitely many primes  $p$  as above, if  $A_f$  is an elliptic curve such that the Mordell–Weil group  $A_f(\mathbb{Q})$  has rank 1 and the  $p$ -primary part of the Shafarevich–Tate group of  $A_f$  over  $\mathbb{Q}$  is finite, then all specializations of  $f^{(p)}$  of weight congruent to 2 modulo  $2(p-1)$  and trivial character have finite  $p$ -primary Shafarevich–Tate group and 1-dimensional image of the relevant  $p$ -adic étale Abel–Jacobi map. An analogous result is obtained also in the rank 0 case. As a second contribution, with no restriction on the dimension of  $A_f$  but assuming the nondegeneracy of certain height pairings à la Gillet–Soulé between Heegner cycles, we show that, for all but finitely many  $p$ ’s, if  $f$  has analytic rank 1, then all specializations of  $f^{(p)}$  of weight congruent to 2 modulo  $2(p-1)$  and trivial character have analytic rank 1. This result provides some evidence in rank 1 and weight larger than 2 for a conjecture of Greenberg predicting that the analytic ranks of even-weight modular forms in a Hida family should be as small as allowed by the functional equation, with at most finitely many exceptions.

**Mathematics Subject Classification (2020):** 11F11 (primary); 14C25 (secondary).