Minimizing under relaxed symmetry constraints: triple and *N*-junctions

GIORGIO FUSCO

Abstract. We consider a non-negative potential $W : \mathbb{R}^2 \to \mathbb{R}$ invariant under the action of the rotation group C_N of the regular polygon with N sides, $N \ge 3$. We assume that W has N nondegenerate zeros and prove the existence of an Njunction solution $U : \mathbb{R}^2 \to \mathbb{R}^2$ to the vector Allen-Cahn equation. The structure of U is such that \mathbb{R}^2 is divided in N approximate sectors associated to the Nzeros of W and, in each sector, U converges to the corresponding zero of W. Assuming only C_N invariance requires a new approach with respect to the one utilized for W invariant under the whole symmetry group Z_N of the regular Ngon. Our proof is variational and is based on sharp lower and upper bounds for the energy of minimizers and on a special pointwise estimate for vector minimizers.

Mathematics Subject Classification (2020): 35J47 (primary); 35B36, 35J50, (secondary).