Multiplicity and degree relative to a set

VINCENT GRANDJEAN AND MARIA MICHALSKA

Abstract. The multiplicity of an analytic function germ f relative to a semianalytic subset germ (S,0) of $(\mathbb{R}^n,0)$ is the largest exponent q such that the inequality $|f(x)| \leq M ||x||^q$ holds on (S,0) for some constant M. We show the existence of a family of semialgebraic curves $\{\Gamma_d\}_{d\in\mathbb{N}}$ determined only by (S,0) such that the multiplicity of any polynomial of degree d relative to (S,0) is equal to its multiplicity relative to Γ_d . Moreover, a semianalytic family $(S_t)_{t\in\mathbb{R}^m}$ given by inequalities $f_i - t_i g_i \geq 0$ for $i = 1, \ldots, m$ admits a stratification of the parameter space \mathbb{R}^m such that on each component of the top-dimensional stratum the relative multiplicity function on \mathcal{O}_n does not change.

One can apply properties of relative multiplicity to obtain analogous results for the degree of a polynomial f relative to a semialgebraic set S, defined as the smallest exponent r such that the inequality $|f(x)| \leq D ||x||^r$ holds on the germ (S, ∞) , for a constant D.

Mathematics Subject Classification (2020): 14P15 (primary); 32S45, 32B20 (secondary).